In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone int...In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi- tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the iscbemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-spe- cific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi- tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.展开更多
A novel composite scaffold based on chitosan-collagenlorganomontmo- rillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue...A novel composite scaffold based on chitosan-collagenlorganomontmo- rillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.展开更多
构建具备良好热稳定性、自组装性质及生物相容性的可食性细胞外基质(extracellular matrix,ECM)类似物支架对于制造结构化细胞培养肉制品至关重要。将羧甲基壳聚糖(carboxymethyl chitosan,CMCS)引入牛骨胶原蛋白(bovine bone collagen,...构建具备良好热稳定性、自组装性质及生物相容性的可食性细胞外基质(extracellular matrix,ECM)类似物支架对于制造结构化细胞培养肉制品至关重要。将羧甲基壳聚糖(carboxymethyl chitosan,CMCS)引入牛骨胶原蛋白(bovine bone collagen,BBC)体系中,通过光谱分析(紫外、红外、荧光光谱)发现BBC与CMCS的相互作用随着引入CMCS添加量的增加而增强,但并未影响BBC的三螺旋结构。差示扫描量热法/热重分析结果表明,CMCS的引入增强了BBC体系的热稳定性。浊度试验及扫描电子显微镜/透射电子显微镜观察结果证实了CMCS引入后胶原蛋白纤维形成度呈上升趋势,聚集行为更明显且自组装速率产生变化,呈现出更疏松扭曲的三维结构以及更大的纤维直径及更广泛的直径分布。但CMCS的引入并未明显影响BBC的D-周期性结构(胶原纤维自组装过程中形成的特征性明暗交替的周期性横纹结构)形成及其长度,且CMCS引入前后体系的细胞相容性也未呈现显著性差异。随着引入CMCS添加量增加,CMCS和BBC之间的静电作用力可能较共价相互作用和氢键更占优势。这些结果表明,CMCS的引入不影响BBC三螺旋结构完整性和生物相容性,并改善了BBC的热稳定性及体外自组装性质。这为开发新型优良可食性胶原蛋白基ECM仿生支架在细胞培养肉领域的应用以及畜禽骨副产物高值化精深加工利用提供了参考信息。展开更多
基金funded by a grant from Shaanxi Provincial Support Project of Scientific Research Development Plan of China,No.2012KCT-16
文摘In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi- tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the iscbemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-spe- cific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi- tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.
基金Acknowledgements The authors acknowledge the financial support of the International Science Cooperation Program of Hainan (Grant Nos. KJHZ2014-19 and KJHZ2015-02). This work was also financially supported by the National Natural Science Foundation of China (NSFC,Grant Nos, 51162006, 51362009 and 51361009) and the Key Science & Technology Project (ZDXM2015118).
文摘A novel composite scaffold based on chitosan-collagenlorganomontmo- rillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.
文摘构建具备良好热稳定性、自组装性质及生物相容性的可食性细胞外基质(extracellular matrix,ECM)类似物支架对于制造结构化细胞培养肉制品至关重要。将羧甲基壳聚糖(carboxymethyl chitosan,CMCS)引入牛骨胶原蛋白(bovine bone collagen,BBC)体系中,通过光谱分析(紫外、红外、荧光光谱)发现BBC与CMCS的相互作用随着引入CMCS添加量的增加而增强,但并未影响BBC的三螺旋结构。差示扫描量热法/热重分析结果表明,CMCS的引入增强了BBC体系的热稳定性。浊度试验及扫描电子显微镜/透射电子显微镜观察结果证实了CMCS引入后胶原蛋白纤维形成度呈上升趋势,聚集行为更明显且自组装速率产生变化,呈现出更疏松扭曲的三维结构以及更大的纤维直径及更广泛的直径分布。但CMCS的引入并未明显影响BBC的D-周期性结构(胶原纤维自组装过程中形成的特征性明暗交替的周期性横纹结构)形成及其长度,且CMCS引入前后体系的细胞相容性也未呈现显著性差异。随着引入CMCS添加量增加,CMCS和BBC之间的静电作用力可能较共价相互作用和氢键更占优势。这些结果表明,CMCS的引入不影响BBC三螺旋结构完整性和生物相容性,并改善了BBC的热稳定性及体外自组装性质。这为开发新型优良可食性胶原蛋白基ECM仿生支架在细胞培养肉领域的应用以及畜禽骨副产物高值化精深加工利用提供了参考信息。