Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20...Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).展开更多
Chlorophyll a concentration(CHL)is an important proxy of the marine ecological environment and phytoplankton production.Long-term trends in CHL of the South China Sea(SCS)reflect the changes in the ecosystem’s produc...Chlorophyll a concentration(CHL)is an important proxy of the marine ecological environment and phytoplankton production.Long-term trends in CHL of the South China Sea(SCS)reflect the changes in the ecosystem’s productivity and functionality in the regional carbon cycle.In this study,we applied a previously reconstructed 15-a(2005–2019)CHL product,which has a complete coverage at 4 km and daily resolutions,to analyze the long-term trends of CHL in the SCS.Quantile regression was used to elaborate on the long-term trends of high,median,and low CHL values,as an extended method of conventional linear regression.The results showed downward trends of the SCS CHL for the 75th,50th,and 25th quantile in the past 15 a,which were−0.0040 mg/(m^(3)·a)(−1.62%per year),−0.0023 mg/(m^(3)·a)(−1.10%per year),and−0.0019 mg/(m^(3)·a)(−1.01%per year).The negative trends in winter(November to March)were more prominent than those in summer(May to September).In terms of spatial distribution,the downward trend was more significant in regions with higher CHL.These led to a reduced standard deviation of CHL over time and space.We further explored the influence of various dynamic factors on CHL trends for the entire SCS and two typical systems(winter Luzon Strait(LZ)and summer Vietnam Upwelling System(SV))with single-variate linear regression and multivariate Random Forest analysis.The multivariate analysis suggested the CHL trend pattern can be best explained by the trends of wind speed and mixed-layer depth.The divergent importance of controlling factors for LZ and SV can explain the different CHL trends for the two systems.This study expanded our understanding of the long-term changes of CHL in the SCS and provided a reference for investigating changes in the marine ecosystem.展开更多
[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship be...[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship between chlorophyll a and environmental factors like water temperature,pH,secchi-depth (SD),total nitrogen,total phosphorus and potassium permanganate index was studied by grey relational analysis method.[Result] The main environmental factors affecting the content of Chlorophyll a in ShaHu Lake were in order of water temperature potassium permanganate index 〉total nitrogen 〉pH〉 total phosphorus 〉SD.[Conclusion] The research provides reference for the control of eutrophication and the reasonable development and utilization of Shahu Lake.展开更多
Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution featu...Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea).展开更多
Acute toxicity of excess Cu on the photosynthetic performance of Chlorella pyrenoidosa was examined by using chlorophyll a fluorescence transients and JIP-test after exposure to elevated Cu concentrations for a short ...Acute toxicity of excess Cu on the photosynthetic performance of Chlorella pyrenoidosa was examined by using chlorophyll a fluorescence transients and JIP-test after exposure to elevated Cu concentrations for a short time period. High Cu concentration resulted in a significant suppression in photosynthesis and respiration. The absorption flux (ABS/RC) per PSII reaction center increased with increasing Cu concentration, but the electron transport flux (ET0/RC) decreased. Excess Cu had an insignificant effect on the trapping flux (TR0/RC). The decline in the efficiency, with which a trapped exciton can move an electron into the electron transport chain further than QA-(Ψ0), the maximal quantum yield of primary photochemistry (φP0), and the quantum yield of electron transport (φE0) were also observed. The amount of active PSII reaction centers per excited cross section (RC/CS) was also in consistency with the change of photosynthesis when cells were exposed to excess Cu concentration. JIP-test parameters had a good linear relationship with photosynthetic O2 evolution. These results suggested that the decrease of photosynthesis in exposure to excess Cu may be a result of the inactivation of PSII reaction centers and the inhibition of electron transport in the acceptor side.展开更多
Since the impoundment of the Three Gorges Reservoir in 2003, algal blooms have frequently been observed in it. The chlorophyll a concentration is an important parameter for evaluating algal blooms. In this study, the ...Since the impoundment of the Three Gorges Reservoir in 2003, algal blooms have frequently been observed in it. The chlorophyll a concentration is an important parameter for evaluating algal blooms. In this study, the chlorophyll a concentration in Xiangxi Bay, in the Three Gorges Reservoir, was predicted using HJ-1 satellite imagery. Several models were established based on a correlation analysis between in situ measurements of the chlorophyll a concentration and the values obtained from satellite images of the study area from January 2010 to December 2011. Chlorophyll a concentrations in Xiangxi Bay were predicted based on the established models. The results show that the maximum correlation is between the reflectance of the band combination of B4/(B2+B3) and in situ measurements of chlorophyll a concentration. The root mean square errors of the predicted values using the linear and quadratic models are 18.49 mg/m3 and 18.52 mg/m3, respectively, and the average relative errors are 37.79% and 36.79%, respectively. The results provide a reference for water bloom prediction in typical tributaries of the Three Gorges Reservoir and contribute to large-scale remote sensing monitoring and water quality management.展开更多
The response of chlorophyll a (Chl a) concentration to wind stress is analyzed in the South China Sea (SCS), using in-situ data of Chl a and remote sensing data (QuikScat-sea surface wind (SSW), AVHRR-sea surfa...The response of chlorophyll a (Chl a) concentration to wind stress is analyzed in the South China Sea (SCS), using in-situ data of Chl a and remote sensing data (QuikScat-sea surface wind (SSW), AVHRR-sea surface temperature (SST), AVISO merged-sea level anomalies (SLA), SeaWiFS- derived Chl a and MODIS Terra-derived Chl a) in August/September/October 2004, 2006 and 2009. The variability of SSW, SST and SLA 7 d before in-situ Chl a sampling (including the work day of in^situ Chl a sampling) with the same latitude and longitude of the study area are investigated, and the correlation coefficients are calculated between these hydrographic factors and in-situ Chl a concentration. The results show that the Chl a-SSW correlation coefficients at upper layers (such as 0 m and 25 m) are more significant than those at deeper layers (such as 50, 75 and 100 m) 1 3 d before, which indicates that there is a time lag of strong surface winds stimulating phytoplankton bloom. By analyzing the relationship among the daily remote sensing derived (RS- derived) SSW, SST, SLA and 3 d averaged SeaWiFS/MODIS-derived Chl a concentration in the northern SCS in September 2004 and 2009 respectively, it shows that the intensity and speed of surface winds could have great influence on extend of Chl a increase. If surface winds reach 4-5 m/s over, Chl a concentration would increase 1-3 d after the process of strong surface winds in open sea area of the northern SCS mainly during September.展开更多
Chlorophyll α(ch1-α) and suspended solid concentrations are two frequently used water quality parameters for monitoring a lake. Traditional measurement of ch1-α and suspended solids, requiring laborious laborator...Chlorophyll α(ch1-α) and suspended solid concentrations are two frequently used water quality parameters for monitoring a lake. Traditional measurement of ch1-α and suspended solids, requiring laborious laboratory work, which is often expensive and time consuming. Hyperspectral remote-sensing measurement provides a fast and easy tool for estimating water trophic status. In situ hyperspectral data on March 7-8, July 6-7, September 20 and December 7-8, 2004 and the corresponding water chemical data were used to regress the algorithm of water quality parameters. Results showed that the peak of water leaving radiance around 700 nm (R700) varied proportionally with ch1-α concentration, and moved to infrared when algal bloom occurred. The reflectance ratio of R702/R685 was well correlated with ch1-α when water surface in no algal bloom case and the correlation coefficient was better if absorption of phycocyanin was considered. The reflectance ratio R620/R531 was highly correlated to the concentration of suspended solids. The relationship between suspended solids and other band groups were also compared. Secchi disk depth could be calculated by non-linear correlation with suspended solids concentration.展开更多
To understand the response of marine ecosystem to environmental factors, the oceanographic (physical and biochemical) data are analyzed to examine the spatio-temporal distributions of chlorophyll a (Chl a) associa...To understand the response of marine ecosystem to environmental factors, the oceanographic (physical and biochemical) data are analyzed to examine the spatio-temporal distributions of chlorophyll a (Chl a) associated with surface temperature, winds and height anomaly for long periods (1997-2008) in the western South China Sea (SCS). The results indicate that seasonal and spatial distributions of Chl a are primarily in- fluenced by monsoon winds and hydrography. A preliminary Empirical Orthogonal Function (EOF) analysis of remotely sensed data is used to assess basic characteristics of the response process of Chl a to physical changes, which reveals interannual variability of anomalous low Chl a values corresponding to strong E1 Nifio (1997-1998), high values corresponding to strong La Nifia (1999-2000), low Chl a corresponding to moderate E1 Nifio (2001-2003), upward Chl a after warm event in 2005 off the east coast of Vietnam. The variability of Chl a in nearshore and the Mekong River Estuary (MER) waters also suggests its response to these warm or cold processes. Considering the evidence for covariabilities between Chl a and sea surface temperature, winds, height anomaly (upwelling or downwelling), cold waters input and strong winds mix- ing may play important roles in the spatial and temporal variability of high Chl a. Such research activities could be very important to gain a mechanistic understanding of ecosystem responses to the climate change in the SCS.展开更多
The spatial and temporal variability and size fractionation of chlorophyll a (Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a (S-Ch...The spatial and temporal variability and size fractionation of chlorophyll a (Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a (S-Chl a) concentration ranged from 0.002 to 0.497 mg/m3 and was obviously higher in the eastern Pacific than in the western and central Pacific.The vertical distribution of Chl a displayed a single peak pattern,and the maximum Chl a layer (MCL) was observed at a shallower depth in the eastern Pacific than in the western Pacific.All three size fractions of Chl a measurements in the surface water showed a similar distribution to total Chl a and were found in higher concentrations in the eastern Pacific than in the western and central Pacific.Picoplankton dominated the phytoplankton in the surveyed tropical and subtropical Pacific Ocean.Furthermore,pico-Chl a (0.2-2 μm) accounted for a larger percentage of the total Chl a in the central Pacific than it did in the western Pacific and eastern Pacific.In the western Pacific,there seemed to be a latitudinal variability in the phytoplankton community composition where small-sized phytoplankton (<2 μm) were more dominant in the tropical than in the subtropical western Pacific.The spatial and temporal variability and size fractionation of Chl a were controlled by hydrological and chemical characteristics and climate events,such as El Ni(n)o and La Ni(n)a.展开更多
Effects of low temperature and INA bacteria on the change of chlorophyll a fluorescence in young fruit from two apricot cultivars were investigated. Low temperature decreased the potential activity (Fv/ Fo), conversio...Effects of low temperature and INA bacteria on the change of chlorophyll a fluorescence in young fruit from two apricot cultivars were investigated. Low temperature decreased the potential activity (Fv/ Fo), conversion efficiency of primary light energy (Fv/Fm)of PS II and photochemical quenching (qP) in young fruit of two apricot cultivars. Low temperature enhanced non-photochemical quenching qN, decreasing the quantum yield of photosynthetic electron transfer. The presence of ice nucleating active (INA) bacteria intensified the effects of low temperature, raised the injury temperature threshold from - 4℃ to - 2 - - 3℃. INA bacteria can be a factor to induce frost susceptibility of apricot fruit. The amount of damaged PS I activity center was related to apricot fruit size and cultivar.展开更多
Photosynthesis includes the collection of light and a/b-binding (LHC) proteins. In high plants, the LHC gene family constituting the light-harvesting complex ofphotosystems I and II. the transfer of solar energy usi...Photosynthesis includes the collection of light and a/b-binding (LHC) proteins. In high plants, the LHC gene family constituting the light-harvesting complex ofphotosystems I and II. the transfer of solar energy using light-harvesting chlorophyll includes LHCA and LHCB sub-families, which encode proteins Zostera marina L. is a monocotyledonous angiosperm and inhab- its submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of diver- gence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relation- ship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.展开更多
To study the effect of hydrographic factors on the spatial distributions of chlorophyll a (Chl a), an investigation was carried out in the tropical eastern Indian Ocean (80 –100 E along 7 S, and 7 –18 S along 80 ...To study the effect of hydrographic factors on the spatial distributions of chlorophyll a (Chl a), an investigation was carried out in the tropical eastern Indian Ocean (80 –100 E along 7 S, and 7 –18 S along 80 E) in December 2010. The fluorescent method was used to obtain total Chl a and size-fractioned Chl a at the 26 stations. The results show that surface Chl a concentration averaged at (0.168 ± 0.095) mg/m 3 s.d. (range: 0.034–0.475 mg/m 3 ), concentrations appeared to be higher in the west for longitudinal variations, and higher in the north for latitudinal variations. Furthermore, the surface Chl a concentration was lower (0.034–0.066 mg/m 3 ) in the region to the south of 16 S. There was a strong subsurface Chl a maximum layer at all stations and the depth of the Chl a maximum increased towards to the east and south along with the respective nitracline. The spatial variation of Chl a was significant: correlation and regression analysis suggests that it was primarily affected by PO 3 4 , N(NO 3 –N+NO 2 –N) and temperature. Size-fractionated Chl a concentration clearly showed that the study area was a typical oligotrophic open ocean, in which picophytoplankton dominated, accounting for approximately 67.8% of total Chl a, followed by nanophytoplankton (24.5%) and microphytoplankton (7.6%). The two larger fractions were sensitive to the limitation of P, while picophytoplankton was primarily affected by temperature.展开更多
Internal waves can bring nutrients to the upper level of water bodies and facilitate phytoplankton photosynthesis.Internal waves occur frequently in the northern portion of the South China Sea and inflict an important...Internal waves can bring nutrients to the upper level of water bodies and facilitate phytoplankton photosynthesis.Internal waves occur frequently in the northern portion of the South China Sea and inflict an important effect on chlorophyll a distribution.In this study,in-situ observation and satellite remote sensing data were used to study the effects of internal waves on chlorophyll a distribution.Based on the in-situ observations,lower chlorophyll a concentrations were present in the middle and bottom level in areas in which internal waves occur frequently,while the surface chlorophyll a distribution increased irregularly,and a small area with relatively higher chlorophyll a concentrations was observed in the area around the Dongsha Island.Satellite remote sensing showed that the chlorophyll a concentration increased in the area near Dongsha Island,where internal waves frequently occurred.The results of the increased chlorophyll a concentration in the surface water near Dongsha Island in the northern portion of the South China Sea indicated that internal waves could uplift phytoplankton and facilitate phytoplankton growth.展开更多
The investigation on sea-ice biology in combination with physics, chemistry and ecology was carried out in the northwestern Weddell Sea, Antarctica, during the cruise ANT/XX III-7 on board POLARSTERN in the austral wi...The investigation on sea-ice biology in combination with physics, chemistry and ecology was carried out in the northwestern Weddell Sea, Antarctica, during the cruise ANT/XX III-7 on board POLARSTERN in the austral winter (August-October) in 2006. The distribution of chlorophyll a was measured and related to sea ice texture. The mean concentrations of chlorophyll a in the sea ice varied considerably with ice texture. The concentration of chlorophyll a per core ranged from 2.10– 84.40 μg/dm ^3 with a mean of 16.56 μg/dm ^3 . And the value of R (chlorophyll a / gross chlorophyll) ranged from 0.79–0.83. These high winter chlorophyll values indicate that primary production is considerable and confirms that there is significant primary production in Antarctic sea ice during winter. Thus this constitutes a major proportion of southern ocean primary production and carbon flux before the sea ice retreats.展开更多
Chlorophyll a concentration is to characterize the amount of phytoplankton.In this paper,the chlorophyll a concentration is retrieved using the OC3M and OC2algorithms based on the MODIS remote sensing data,and using t...Chlorophyll a concentration is to characterize the amount of phytoplankton.In this paper,the chlorophyll a concentration is retrieved using the OC3M and OC2algorithms based on the MODIS remote sensing data,and using the band ratio,OC3G and YOC algorithms based on the GOCI remote sensing data.Based on the chlorophyll a measured data in the Bohai Bay in spring,2012,the spatial distribution trends of retrieval results are consistent with the measured results.By the inversion precision analysis,the accuracy of retrieval results of band ratio method based on GOCI is similar to that of OC3M method based on the MODIS.The precision retrieval results of YOC method based on GOCI are higher than the other methods.展开更多
The distributions of chlorophyll a concentration, primary production and new productionwere observed in the Laizhou Bay of the Bohai Sea in both spring and neap tides during July 1997. The results showed that there we...The distributions of chlorophyll a concentration, primary production and new productionwere observed in the Laizhou Bay of the Bohai Sea in both spring and neap tides during July 1997. The results showed that there were marked features of spatial zonation in the surveyed area, due to the differences between the geographic environment and the hydrological conditions. Chlorophyll a, primary production and new production were all higher in spring tides than that in neap tides in the Laizhou Bay. The highest values of these parameters were encountered in the central regions of the bay. At most stations, chlorophyll a concentrations at the bottom were higher than that at the surface. The results of size-fractionated chlorophyll a and primary production showed that contributions of nanocombining pi-coplankton ( <20 μm) to total chlorophyll a and primary production were dominant in phytoplankton community biomass and production of the Laizhou Bay. The environmental factors, primary production and new production in the Laizhou Bay are compared with other sea areas.展开更多
The South China Sea(SCS) and the Arabian Sea(AS) are both located roughly in the north tropical zone with a range of similar latitude(0°–24°N). Monsoon winds play similar roles in the upper oceanic ci...The South China Sea(SCS) and the Arabian Sea(AS) are both located roughly in the north tropical zone with a range of similar latitude(0°–24°N). Monsoon winds play similar roles in the upper oceanic circulations of the both seas. But the distinct patterns of chlorophyll a(Chl a) concentration are observed between the SCS and the AS.The Chl a concentration in the SCS is generally lower than that in the AS in summer(June–August); the summer Chl a concentration in the AS shows stronger interannual variation, compared with that in the SCS; Moderate resolution imaging spectroradiometer(MODIS)-derived data present higher atmospheric aerosol deposition and stronger wind speed in the AS. And it has also been found that good correlations exist between the index of the dust precipitation indicated by aerosol optical thickness(AOT) and the Chl a concentration, or between wind and Chl a concentration. These imply that the wind and the dust precipitation bring more nutrients into the AS from the sky, the sub-layer or coast regions, inducing higher Chl a concentration. The results indicate that the wind velocity and the dust precipitation can play important roles in the Chl a concentration for the AS and the SCS in summer. However aerosol impact is weak on the biological productivity in the west SCS and wind-induced upwelling is the main source.展开更多
Investigations of chlorophyll a and primary productivity were carried out inthe Bering Sea along the BR line and the BS line during the Second Chinese National Arctic ResearchExpedition in the summer of 2003.The resul...Investigations of chlorophyll a and primary productivity were carried out inthe Bering Sea along the BR line and the BS line during the Second Chinese National Arctic ResearchExpedition in the summer of 2003.The results showed that the surface chlorophyll a concentrationswere 0.199~1.170μg/dm^(3),and the average value was 0.723μg/dm^(3) on the BR line.For the BSline,the surface chlorophyll a concentrations were 0.519~4.644μg/dm^(3)(average 1.605μg/dm^(3))and 0.568~14.968μg/dm^(3)(average 5.311μg/dm^(3))during the early and late summer,respectively.The average value in the late summer was much higher than that in the early summer.The high values(more than 4.0μg/dm^(3))occurred at stations of the BS line in the southern Bering Strait.Thechlorophyll a concentrations in the subsurface layer were higher than those in the surface layer.The results of the size-fractionated chlorophyll a showed that the contribution of the picoplanktonto total chlorophyll a was the predominance at the early summer and the contribution of thenetplankton was the predominance at the late summer.The carbon potential primary productivitiesvaried between 0.471 and 1.147 mg/(m^(3)·h)on the BR line,with average rates of 0.728 mg/(m^(3)·h).The primary productivities on the BS line were much higher than those of the BR line,ranging from1.227 mg/(m^(3)·h)at the early summer to 19.046 mg/(m^(3)·h)at the late summer.The results of thesize-fractionated primary productivity showed that the contribution of the nanoplankton to totalproductivity was the predominance at the early summer and the contribution of the netplankton waspredominance at the late summer.The assimilation number of photosynthesis was 0.45~2.80 mg/(mg·h)in the surveyed stations.展开更多
The primary production and chlorophyll a concentration of picoplankton (0.2 - 2 μm) , nanoplankton (2 - 20μm) and micro- plankton (20 -200 μm) are described in the northeastern Pacific Ocean near the Hawaii I...The primary production and chlorophyll a concentration of picoplankton (0.2 - 2 μm) , nanoplankton (2 - 20μm) and micro- plankton (20 -200 μm) are described in the northeastern Pacific Ocean near the Hawaii Islands during the six survey cruises from 1996 to 2003:DY85-4, DY95-7, DY95-8, DY95-10, DY105-11 and DY105-12.14. The primary production of carbon was in range from 76.8 to 191.9 mg/(m^2 · d) with an average of 116.1 mg/( m^2 · d) in the east region, and from 73.1 to 222.5 mg/( m^2 · d) with an average of 127.1 mg/( m^2 · d) in the west region, similar to the other oligotrophic regions of the Pacific Ocean investigated. The chlorophyll a concentration was about 0.1 mg/m^3 from the surface to the 50 m depth, about 0.2 -0.4 mg/m^3from 50 to 100 m, and gradually decreased below the 100 m depth. The picoplankton accounted for more than 70% of the total chlorophyll a in the upper layer ( surface to 125 m), but it decreased to less than 50% in depth below 125 m. The nanoplankton and microplankton combined only accounted for less than 30% of the total chlorophyll a in the upper layer, but showed a more even vertical distribution.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(Nos.202341017,202313024)。
文摘Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).
基金The National Natural Science Foundation of China under contract No.41906019.
文摘Chlorophyll a concentration(CHL)is an important proxy of the marine ecological environment and phytoplankton production.Long-term trends in CHL of the South China Sea(SCS)reflect the changes in the ecosystem’s productivity and functionality in the regional carbon cycle.In this study,we applied a previously reconstructed 15-a(2005–2019)CHL product,which has a complete coverage at 4 km and daily resolutions,to analyze the long-term trends of CHL in the SCS.Quantile regression was used to elaborate on the long-term trends of high,median,and low CHL values,as an extended method of conventional linear regression.The results showed downward trends of the SCS CHL for the 75th,50th,and 25th quantile in the past 15 a,which were−0.0040 mg/(m^(3)·a)(−1.62%per year),−0.0023 mg/(m^(3)·a)(−1.10%per year),and−0.0019 mg/(m^(3)·a)(−1.01%per year).The negative trends in winter(November to March)were more prominent than those in summer(May to September).In terms of spatial distribution,the downward trend was more significant in regions with higher CHL.These led to a reduced standard deviation of CHL over time and space.We further explored the influence of various dynamic factors on CHL trends for the entire SCS and two typical systems(winter Luzon Strait(LZ)and summer Vietnam Upwelling System(SV))with single-variate linear regression and multivariate Random Forest analysis.The multivariate analysis suggested the CHL trend pattern can be best explained by the trends of wind speed and mixed-layer depth.The divergent importance of controlling factors for LZ and SV can explain the different CHL trends for the two systems.This study expanded our understanding of the long-term changes of CHL in the SCS and provided a reference for investigating changes in the marine ecosystem.
基金Supported by Natural Science Foundation of Ningxia (NZ0829)~~
文摘[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship between chlorophyll a and environmental factors like water temperature,pH,secchi-depth (SD),total nitrogen,total phosphorus and potassium permanganate index was studied by grey relational analysis method.[Result] The main environmental factors affecting the content of Chlorophyll a in ShaHu Lake were in order of water temperature potassium permanganate index 〉total nitrogen 〉pH〉 total phosphorus 〉SD.[Conclusion] The research provides reference for the control of eutrophication and the reasonable development and utilization of Shahu Lake.
文摘Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea).
基金supported by the National Natural Science Foundation of China (No. 40676079, 40976078)the National Key Technology R&D Program (No.2008ZX07211-003)
文摘Acute toxicity of excess Cu on the photosynthetic performance of Chlorella pyrenoidosa was examined by using chlorophyll a fluorescence transients and JIP-test after exposure to elevated Cu concentrations for a short time period. High Cu concentration resulted in a significant suppression in photosynthesis and respiration. The absorption flux (ABS/RC) per PSII reaction center increased with increasing Cu concentration, but the electron transport flux (ET0/RC) decreased. Excess Cu had an insignificant effect on the trapping flux (TR0/RC). The decline in the efficiency, with which a trapped exciton can move an electron into the electron transport chain further than QA-(Ψ0), the maximal quantum yield of primary photochemistry (φP0), and the quantum yield of electron transport (φE0) were also observed. The amount of active PSII reaction centers per excited cross section (RC/CS) was also in consistency with the change of photosynthesis when cells were exposed to excess Cu concentration. JIP-test parameters had a good linear relationship with photosynthetic O2 evolution. These results suggested that the decrease of photosynthesis in exposure to excess Cu may be a result of the inactivation of PSII reaction centers and the inhibition of electron transport in the acceptor side.
基金supported by the National Natural Science Foundation of China(Grants No.51009080 and 51179095)the Research Innovation Fund for Postgraduates in China Three Gorges University(Grant No.2012CX012)
文摘Since the impoundment of the Three Gorges Reservoir in 2003, algal blooms have frequently been observed in it. The chlorophyll a concentration is an important parameter for evaluating algal blooms. In this study, the chlorophyll a concentration in Xiangxi Bay, in the Three Gorges Reservoir, was predicted using HJ-1 satellite imagery. Several models were established based on a correlation analysis between in situ measurements of the chlorophyll a concentration and the values obtained from satellite images of the study area from January 2010 to December 2011. Chlorophyll a concentrations in Xiangxi Bay were predicted based on the established models. The results show that the maximum correlation is between the reflectance of the band combination of B4/(B2+B3) and in situ measurements of chlorophyll a concentration. The root mean square errors of the predicted values using the linear and quadratic models are 18.49 mg/m3 and 18.52 mg/m3, respectively, and the average relative errors are 37.79% and 36.79%, respectively. The results provide a reference for water bloom prediction in typical tributaries of the Three Gorges Reservoir and contribute to large-scale remote sensing monitoring and water quality management.
基金The National Natural Science Foundation of China under contract Nos 41076011, 40531006, 41130855 and 40906057the Knowledge Innovation Project of Chinese Academy of Sciences under contract No. KZCX2-YW-Q07
文摘The response of chlorophyll a (Chl a) concentration to wind stress is analyzed in the South China Sea (SCS), using in-situ data of Chl a and remote sensing data (QuikScat-sea surface wind (SSW), AVHRR-sea surface temperature (SST), AVISO merged-sea level anomalies (SLA), SeaWiFS- derived Chl a and MODIS Terra-derived Chl a) in August/September/October 2004, 2006 and 2009. The variability of SSW, SST and SLA 7 d before in-situ Chl a sampling (including the work day of in^situ Chl a sampling) with the same latitude and longitude of the study area are investigated, and the correlation coefficients are calculated between these hydrographic factors and in-situ Chl a concentration. The results show that the Chl a-SSW correlation coefficients at upper layers (such as 0 m and 25 m) are more significant than those at deeper layers (such as 50, 75 and 100 m) 1 3 d before, which indicates that there is a time lag of strong surface winds stimulating phytoplankton bloom. By analyzing the relationship among the daily remote sensing derived (RS- derived) SSW, SST, SLA and 3 d averaged SeaWiFS/MODIS-derived Chl a concentration in the northern SCS in September 2004 and 2009 respectively, it shows that the intensity and speed of surface winds could have great influence on extend of Chl a increase. If surface winds reach 4-5 m/s over, Chl a concentration would increase 1-3 d after the process of strong surface winds in open sea area of the northern SCS mainly during September.
基金Supported by National Natural Science Foundation of China (No. 40576078), Natural Science Foundation of Guangdong Province (No. 5003685), Post-Doctor Foundation of China, Post-doctor Foundation of Zhejiang Province, Post-Doctor Foundation of Shanghai and the Na-tional High-Tech R&D of China (863 Program) (No. 2002AA639490)
文摘Chlorophyll α(ch1-α) and suspended solid concentrations are two frequently used water quality parameters for monitoring a lake. Traditional measurement of ch1-α and suspended solids, requiring laborious laboratory work, which is often expensive and time consuming. Hyperspectral remote-sensing measurement provides a fast and easy tool for estimating water trophic status. In situ hyperspectral data on March 7-8, July 6-7, September 20 and December 7-8, 2004 and the corresponding water chemical data were used to regress the algorithm of water quality parameters. Results showed that the peak of water leaving radiance around 700 nm (R700) varied proportionally with ch1-α concentration, and moved to infrared when algal bloom occurred. The reflectance ratio of R702/R685 was well correlated with ch1-α when water surface in no algal bloom case and the correlation coefficient was better if absorption of phycocyanin was considered. The reflectance ratio R620/R531 was highly correlated to the concentration of suspended solids. The relationship between suspended solids and other band groups were also compared. Secchi disk depth could be calculated by non-linear correlation with suspended solids concentration.
基金The National Natural Science Foundation of China under contract Nos 41076011, 41206023, 41222038key program under contract No.40531006the National Basic Research Program of China ("973"Program) under contract No.2011CB403606
文摘To understand the response of marine ecosystem to environmental factors, the oceanographic (physical and biochemical) data are analyzed to examine the spatio-temporal distributions of chlorophyll a (Chl a) associated with surface temperature, winds and height anomaly for long periods (1997-2008) in the western South China Sea (SCS). The results indicate that seasonal and spatial distributions of Chl a are primarily in- fluenced by monsoon winds and hydrography. A preliminary Empirical Orthogonal Function (EOF) analysis of remotely sensed data is used to assess basic characteristics of the response process of Chl a to physical changes, which reveals interannual variability of anomalous low Chl a values corresponding to strong E1 Nifio (1997-1998), high values corresponding to strong La Nifia (1999-2000), low Chl a corresponding to moderate E1 Nifio (2001-2003), upward Chl a after warm event in 2005 off the east coast of Vietnam. The variability of Chl a in nearshore and the Mekong River Estuary (MER) waters also suggests its response to these warm or cold processes. Considering the evidence for covariabilities between Chl a and sea surface temperature, winds, height anomaly (upwelling or downwelling), cold waters input and strong winds mix- ing may play important roles in the spatial and temporal variability of high Chl a. Such research activities could be very important to gain a mechanistic understanding of ecosystem responses to the climate change in the SCS.
基金The Scientific Research Fund of the Second Institute of Oceanography,SOA under contract No. JG1024the COMRA Special Foundation under contract Nos DY125-13-E-01 and DY125-14-E-02
文摘The spatial and temporal variability and size fractionation of chlorophyll a (Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a (S-Chl a) concentration ranged from 0.002 to 0.497 mg/m3 and was obviously higher in the eastern Pacific than in the western and central Pacific.The vertical distribution of Chl a displayed a single peak pattern,and the maximum Chl a layer (MCL) was observed at a shallower depth in the eastern Pacific than in the western Pacific.All three size fractions of Chl a measurements in the surface water showed a similar distribution to total Chl a and were found in higher concentrations in the eastern Pacific than in the western and central Pacific.Picoplankton dominated the phytoplankton in the surveyed tropical and subtropical Pacific Ocean.Furthermore,pico-Chl a (0.2-2 μm) accounted for a larger percentage of the total Chl a in the central Pacific than it did in the western Pacific and eastern Pacific.In the western Pacific,there seemed to be a latitudinal variability in the phytoplankton community composition where small-sized phytoplankton (<2 μm) were more dominant in the tropical than in the subtropical western Pacific.The spatial and temporal variability and size fractionation of Chl a were controlled by hydrological and chemical characteristics and climate events,such as El Ni(n)o and La Ni(n)a.
文摘Effects of low temperature and INA bacteria on the change of chlorophyll a fluorescence in young fruit from two apricot cultivars were investigated. Low temperature decreased the potential activity (Fv/ Fo), conversion efficiency of primary light energy (Fv/Fm)of PS II and photochemical quenching (qP) in young fruit of two apricot cultivars. Low temperature enhanced non-photochemical quenching qN, decreasing the quantum yield of photosynthetic electron transfer. The presence of ice nucleating active (INA) bacteria intensified the effects of low temperature, raised the injury temperature threshold from - 4℃ to - 2 - - 3℃. INA bacteria can be a factor to induce frost susceptibility of apricot fruit. The amount of damaged PS I activity center was related to apricot fruit size and cultivar.
基金supported by the Key Science and Technology Program of Shandong Province (Grant no.2012GHY11527)the Public Science and Technology Research Funds Projects of Ocean,State Oceanic Administration of China (Grant no.201105021)
文摘Photosynthesis includes the collection of light and a/b-binding (LHC) proteins. In high plants, the LHC gene family constituting the light-harvesting complex ofphotosystems I and II. the transfer of solar energy using light-harvesting chlorophyll includes LHCA and LHCB sub-families, which encode proteins Zostera marina L. is a monocotyledonous angiosperm and inhab- its submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of diver- gence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relation- ship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.
基金China Ocean Mineral Resources R & D Association under contract No. DY125-13-E-01the Scientific Research Fund of the Second Institute of Oceanography, State Oceanic Administration under contract No. JG1024
文摘To study the effect of hydrographic factors on the spatial distributions of chlorophyll a (Chl a), an investigation was carried out in the tropical eastern Indian Ocean (80 –100 E along 7 S, and 7 –18 S along 80 E) in December 2010. The fluorescent method was used to obtain total Chl a and size-fractioned Chl a at the 26 stations. The results show that surface Chl a concentration averaged at (0.168 ± 0.095) mg/m 3 s.d. (range: 0.034–0.475 mg/m 3 ), concentrations appeared to be higher in the west for longitudinal variations, and higher in the north for latitudinal variations. Furthermore, the surface Chl a concentration was lower (0.034–0.066 mg/m 3 ) in the region to the south of 16 S. There was a strong subsurface Chl a maximum layer at all stations and the depth of the Chl a maximum increased towards to the east and south along with the respective nitracline. The spatial variation of Chl a was significant: correlation and regression analysis suggests that it was primarily affected by PO 3 4 , N(NO 3 –N+NO 2 –N) and temperature. Size-fractionated Chl a concentration clearly showed that the study area was a typical oligotrophic open ocean, in which picophytoplankton dominated, accounting for approximately 67.8% of total Chl a, followed by nanophytoplankton (24.5%) and microphytoplankton (7.6%). The two larger fractions were sensitive to the limitation of P, while picophytoplankton was primarily affected by temperature.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-01)the National High Technology Research and Development Program of China (863 Program) (No.2008AA09Z112)+4 种基金the National Basic Research Program of China (973 Program) (No.2010CB951200)the National Natural Sciences Foundation of China (No.40876092)the Program of Guangdong Provincial Science & Technology (No.2008B030303026)the Natural Sciences Foundation of Guangdong Province (No.8351030101000002)the Project of Knowledge Innovation of the South China Sea Institute of Oceanology (No.LYQY200701)
文摘Internal waves can bring nutrients to the upper level of water bodies and facilitate phytoplankton photosynthesis.Internal waves occur frequently in the northern portion of the South China Sea and inflict an important effect on chlorophyll a distribution.In this study,in-situ observation and satellite remote sensing data were used to study the effects of internal waves on chlorophyll a distribution.Based on the in-situ observations,lower chlorophyll a concentrations were present in the middle and bottom level in areas in which internal waves occur frequently,while the surface chlorophyll a distribution increased irregularly,and a small area with relatively higher chlorophyll a concentrations was observed in the area around the Dongsha Island.Satellite remote sensing showed that the chlorophyll a concentration increased in the area near Dongsha Island,where internal waves frequently occurred.The results of the increased chlorophyll a concentration in the surface water near Dongsha Island in the northern portion of the South China Sea indicated that internal waves could uplift phytoplankton and facilitate phytoplankton growth.
基金supported by the Alfred gener Institute for Polar and Marine Research.
文摘The investigation on sea-ice biology in combination with physics, chemistry and ecology was carried out in the northwestern Weddell Sea, Antarctica, during the cruise ANT/XX III-7 on board POLARSTERN in the austral winter (August-October) in 2006. The distribution of chlorophyll a was measured and related to sea ice texture. The mean concentrations of chlorophyll a in the sea ice varied considerably with ice texture. The concentration of chlorophyll a per core ranged from 2.10– 84.40 μg/dm ^3 with a mean of 16.56 μg/dm ^3 . And the value of R (chlorophyll a / gross chlorophyll) ranged from 0.79–0.83. These high winter chlorophyll values indicate that primary production is considerable and confirms that there is significant primary production in Antarctic sea ice during winter. Thus this constitutes a major proportion of southern ocean primary production and carbon flux before the sea ice retreats.
基金supported by Tianjin Natural Science Foundation Project(14JCYBJC22500)
文摘Chlorophyll a concentration is to characterize the amount of phytoplankton.In this paper,the chlorophyll a concentration is retrieved using the OC3M and OC2algorithms based on the MODIS remote sensing data,and using the band ratio,OC3G and YOC algorithms based on the GOCI remote sensing data.Based on the chlorophyll a measured data in the Bohai Bay in spring,2012,the spatial distribution trends of retrieval results are consistent with the measured results.By the inversion precision analysis,the accuracy of retrieval results of band ratio method based on GOCI is similar to that of OC3M method based on the MODIS.The precision retrieval results of YOC method based on GOCI are higher than the other methods.
基金This study was supported by the National Natural Science Foundation of China under contract No. 497900102.
文摘The distributions of chlorophyll a concentration, primary production and new productionwere observed in the Laizhou Bay of the Bohai Sea in both spring and neap tides during July 1997. The results showed that there were marked features of spatial zonation in the surveyed area, due to the differences between the geographic environment and the hydrological conditions. Chlorophyll a, primary production and new production were all higher in spring tides than that in neap tides in the Laizhou Bay. The highest values of these parameters were encountered in the central regions of the bay. At most stations, chlorophyll a concentrations at the bottom were higher than that at the surface. The results of size-fractionated chlorophyll a and primary production showed that contributions of nanocombining pi-coplankton ( <20 μm) to total chlorophyll a and primary production were dominant in phytoplankton community biomass and production of the Laizhou Bay. The environmental factors, primary production and new production in the Laizhou Bay are compared with other sea areas.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010302the National Natural Science Foundation of China under contract Nos 41276182,41406131 and 41376125+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.SQ201205the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting of China under contract No.LOMF1307
文摘The South China Sea(SCS) and the Arabian Sea(AS) are both located roughly in the north tropical zone with a range of similar latitude(0°–24°N). Monsoon winds play similar roles in the upper oceanic circulations of the both seas. But the distinct patterns of chlorophyll a(Chl a) concentration are observed between the SCS and the AS.The Chl a concentration in the SCS is generally lower than that in the AS in summer(June–August); the summer Chl a concentration in the AS shows stronger interannual variation, compared with that in the SCS; Moderate resolution imaging spectroradiometer(MODIS)-derived data present higher atmospheric aerosol deposition and stronger wind speed in the AS. And it has also been found that good correlations exist between the index of the dust precipitation indicated by aerosol optical thickness(AOT) and the Chl a concentration, or between wind and Chl a concentration. These imply that the wind and the dust precipitation bring more nutrients into the AS from the sky, the sub-layer or coast regions, inducing higher Chl a concentration. The results indicate that the wind velocity and the dust precipitation can play important roles in the Chl a concentration for the AS and the SCS in summer. However aerosol impact is weak on the biological productivity in the west SCS and wind-induced upwelling is the main source.
基金supported by the National Natural Science Foundation of China under contract Nos 40476004 and 40476003.
文摘Investigations of chlorophyll a and primary productivity were carried out inthe Bering Sea along the BR line and the BS line during the Second Chinese National Arctic ResearchExpedition in the summer of 2003.The results showed that the surface chlorophyll a concentrationswere 0.199~1.170μg/dm^(3),and the average value was 0.723μg/dm^(3) on the BR line.For the BSline,the surface chlorophyll a concentrations were 0.519~4.644μg/dm^(3)(average 1.605μg/dm^(3))and 0.568~14.968μg/dm^(3)(average 5.311μg/dm^(3))during the early and late summer,respectively.The average value in the late summer was much higher than that in the early summer.The high values(more than 4.0μg/dm^(3))occurred at stations of the BS line in the southern Bering Strait.Thechlorophyll a concentrations in the subsurface layer were higher than those in the surface layer.The results of the size-fractionated chlorophyll a showed that the contribution of the picoplanktonto total chlorophyll a was the predominance at the early summer and the contribution of thenetplankton was the predominance at the late summer.The carbon potential primary productivitiesvaried between 0.471 and 1.147 mg/(m^(3)·h)on the BR line,with average rates of 0.728 mg/(m^(3)·h).The primary productivities on the BS line were much higher than those of the BR line,ranging from1.227 mg/(m^(3)·h)at the early summer to 19.046 mg/(m^(3)·h)at the late summer.The results of thesize-fractionated primary productivity showed that the contribution of the nanoplankton to totalproductivity was the predominance at the early summer and the contribution of the netplankton waspredominance at the late summer.The assimilation number of photosynthesis was 0.45~2.80 mg/(mg·h)in the surveyed stations.
基金The China Ocean Mineral Resources Research and Development Association (COMRA) under contract Nos DY105-02-01 and DY105-02-03the National Key Basic Research Special of China under contract No.G2000078500.
文摘The primary production and chlorophyll a concentration of picoplankton (0.2 - 2 μm) , nanoplankton (2 - 20μm) and micro- plankton (20 -200 μm) are described in the northeastern Pacific Ocean near the Hawaii Islands during the six survey cruises from 1996 to 2003:DY85-4, DY95-7, DY95-8, DY95-10, DY105-11 and DY105-12.14. The primary production of carbon was in range from 76.8 to 191.9 mg/(m^2 · d) with an average of 116.1 mg/( m^2 · d) in the east region, and from 73.1 to 222.5 mg/( m^2 · d) with an average of 127.1 mg/( m^2 · d) in the west region, similar to the other oligotrophic regions of the Pacific Ocean investigated. The chlorophyll a concentration was about 0.1 mg/m^3 from the surface to the 50 m depth, about 0.2 -0.4 mg/m^3from 50 to 100 m, and gradually decreased below the 100 m depth. The picoplankton accounted for more than 70% of the total chlorophyll a in the upper layer ( surface to 125 m), but it decreased to less than 50% in depth below 125 m. The nanoplankton and microplankton combined only accounted for less than 30% of the total chlorophyll a in the upper layer, but showed a more even vertical distribution.