A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently...A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently,to recover massive superpolies,the nested monomial prediction technique,the algorithm based on the divide-and-conquer strategy,and stretching cube attacks were proposed,which have been used to recover a superpoly with over ten million monomials for the NFSR-based stream ciphers such as Trivium and Grain-128AEAD.Nevertheless,when these methods are used to recover superpolies,many invalid calculations are performed,which makes recovering superpolies more difficult.This study finds an interesting observation that can be used to improve the above methods.Based on the observation,a new method is proposed to avoid a part of invalid calculations during the process of recovering superpolies.Then,the new method is applied to the nested monomial prediction technique and an improved superpoly recovery framework is presented.To verify the effectiveness of the proposed scheme,the improved framework is applied to 844-and 846-round Trivium and the exact ANFs of the superpolies is obtained with over one hundred million monomials,showing the improved superpoly recovery technique is powerful.Besides,extensive experiments on other scaled-down variants of NFSR-based stream ciphers show that the proposed scheme indeed could be more efficient on the superpoly recovery against NFSR-based stream ciphers.展开更多
The compatibility of different quantum algorithms should be considered when these algorithms are combined.In this paper,the method of combining Grover and Simon is studied for the first time,under some preconditions o...The compatibility of different quantum algorithms should be considered when these algorithms are combined.In this paper,the method of combining Grover and Simon is studied for the first time,under some preconditions or assumptions.First,we give two preconditions of applying Grover’s algorithm,which ensure that the success probability of finding the marked element is close to 1.Then,based on these two preconditions,it is found out that the success probability of the quantum algorithm for FXconstruction is far less than 1.Furthermore,we give the design method of the Oracle function,and then present the general method of combining Grover and Simon algorithm for attacking block ciphers,with success probability close to 1.展开更多
In lightweight cryptographic primitives, round functions with only simple operations XOR, modular addition and rotation are widely used nowadays. This kind of ciphers is called ARX ciphers. For ARX ciphers, impossible...In lightweight cryptographic primitives, round functions with only simple operations XOR, modular addition and rotation are widely used nowadays. This kind of ciphers is called ARX ciphers. For ARX ciphers, impossible differential cryptanalysis and zero-correlation linear cryptanalysis are among the most powerful attacks, and the key problems for these two attacks are discovering more and longer impossible differentials(IDs) and zero-correlation linear hulls(ZCLHs). However, finding new IDs and ZCLHs for ARX ciphers has been a manual work for a long time, which has been an obstacle in improving these two attacks. This paper proposes an automatic search method to improve the efficiency of finding new IDs and ZCLHs for ARX ciphers. In order to prove the efficiency of this new tool, we take HIGHT, LEA, SPECK three typical ARX algorithms as examples to explore their longer and new impossible differentials and zero-correlation linear hulls. To the best of our knowledge, this is the first application of automatic search method for ARX ciphers on finding new IDs and ZCLHs. For HIGHT, we find more 17 round IDs and multiple 17 round ZCLHs. This is the first discovery of 17 round ZCLHs for HIGHT. For LEA, we find extra four 10 round IDs and several 9 round ZCLHs. In the specification of LEA, the designers just identified three 10 round IDs and one 7round ZCLH. For SPECK, we find thousands of 6 round IDs and forty-four 6 round ZCLHs. Neither IDs nor ZCLHs of SPECK has been proposed before. The successful application of our new tool shows great potential in improving the impossible differential cryptanalysis and zero-correlation linear cryptanalysis on ARX ciphers..展开更多
Timing attacks break a cryptosystem by time measurement to recover keys. Most available countermeasures protect block ciphers based on the safety of modules. This paper gives a complete definition of timing attacks an...Timing attacks break a cryptosystem by time measurement to recover keys. Most available countermeasures protect block ciphers based on the safety of modules. This paper gives a complete definition of timing attacks and studies the vulnerability of operations and modules on timing attacks. We present a method to transfer the security of the algorithm to that of secure operations by reduction. As a result, we hopefully tend to reconcile the provable security notions and modem cryptography with real-world implementations of block ciphers.展开更多
Wireless sensor networks (WSNs) are exposed to a variety of attacks. The quality and complexity of attacks are rising day by day. The proposed work aims at showing how the complexity of modern attacks is growing accor...Wireless sensor networks (WSNs) are exposed to a variety of attacks. The quality and complexity of attacks are rising day by day. The proposed work aims at showing how the complexity of modern attacks is growing accordingly, leading to a similar rise in methods of resistance. Limitations in computational and battery power in sensor nodes are constraints on the diversity of security mechanisms. We must apply only suitable mechanisms to WSN where our approach was motivated by the application of an improved Feistel scheme. The modified accelerated-cipher design uses data-dependent permutations, and can be used for fast hardware, firmware, software and WSN encryption systems. The approach presented showed that ciphers using this approach are less likely to suffer intrusion of differential cryptanalysis than currently used popular WSN ciphers like DES, Camellia and so on.展开更多
This paper presents state-of-art cryptanalysis studies on attacks of the substitution and transposition ciphers using various metaheuristic algorithms.Traditional cryptanalysis methods employ an exhaustive search,whic...This paper presents state-of-art cryptanalysis studies on attacks of the substitution and transposition ciphers using various metaheuristic algorithms.Traditional cryptanalysis methods employ an exhaustive search,which is computationally expensive.Therefore,metaheuristics have attracted the interest of researchers in the cryptanalysis field.Metaheuristic algorithms are known for improving the search for the optimum solution and include Genetic Algorithm,Simulated Annealing,Tabu Search,Particle Swarm Optimization,Differential Evolution,Ant Colony,the Artificial Bee Colony,Cuckoo Search,and Firefly algorithms.The most important part of these various applications is deciding the fitness function to guide the search.This review presents how these algorithms have been implemented for cryptanalysis purposes.The paper highlights the results and findings of the studies and determines the gaps in the literature.展开更多
Several kinds of stream ciphers—complementary sequences of period sequences,partial sum of period sequences,inverse order sequences and finitely generated sequences,arestudied by using techniques of generating functi...Several kinds of stream ciphers—complementary sequences of period sequences,partial sum of period sequences,inverse order sequences and finitely generated sequences,arestudied by using techniques of generating functions.Their minimal polynomials,periods,as wellas generating functions are given.As to finitely generated sequences,the change of their linearcomplexity profiles as well as the relationship between the two generated sequences usder thecase in which the degree of connected polynomials are fixed,are discussed.展开更多
We propose a framework for designing randomized stream ciphers with enhanced security. The key attribute of this framework is using of nonlinear bijective mappings or keyless hash functions for random coding. We inves...We propose a framework for designing randomized stream ciphers with enhanced security. The key attribute of this framework is using of nonlinear bijective mappings or keyless hash functions for random coding. We investigate the computational security of the proposed ciphers against chosen-plaintext-chosen-initialization-vector attacks and show that it is based on the hardness of solving some systems of random nonlinear Boolean equations. We also provide guidelines for choosing components to design randomizers for specified ciphers.展开更多
At the Annual International Cryptology Conference in 2019,Gohr introduced a deep learning based cryptanalysis technique applicable to the reduced-round lightweight block ciphers with a short block of SPECK32/64.One si...At the Annual International Cryptology Conference in 2019,Gohr introduced a deep learning based cryptanalysis technique applicable to the reduced-round lightweight block ciphers with a short block of SPECK32/64.One significant challenge left unstudied by Gohr's work is the implementation of key recovery attacks on large-state block ciphers based on deep learning.The purpose of this paper is to present an improved deep learning based framework for recovering keys for large-state block ciphers.First,we propose a key bit sensitivity test(KBST)based on deep learning to divide the key space objectively.Second,we propose a new method for constructing neural distinguisher combinations to improve a deep learning based key recovery framework for large-state block ciphers and demonstrate its rationality and effectiveness from the perspective of cryptanalysis.Under the improved key recovery framework,we train an efficient neural distinguisher combination for each large-state member of SIMON and SPECK and finally carry out a practical key recovery attack on the large-state members of SIMON and SPECK.Furthermore,we propose that the 13-round SIMON64 attack is the most effective approach for practical key recovery to date.Noteworthly,this is the first attempt to propose deep learning based practical key recovery attacks on18-round SIMON128,19-round SIMON128,14-round SIMON96,and 14-round SIMON64.Additionally,we enhance the outcomes of the practical key recovery attack on SPECK large-state members,which amplifies the success rate of the key recovery attack in comparison to existing results.展开更多
Non-malleable code is an encoding scheme that is useful in situations where traditional error correction or detection is impossible to achieve.It ensures with high probability that decoded message is either completely...Non-malleable code is an encoding scheme that is useful in situations where traditional error correction or detection is impossible to achieve.It ensures with high probability that decoded message is either completely unrelated or the original one,when tampering has no effect.Usually,standard version of non-malleable codes provide security against one time tampering attack.Block ciphers are successfully employed in the construction of non-malleable codes.Such construction fails to provide security when an adversary tampers the codeword more than once.Continuously non-malleable codes further allow an attacker to tamper the message for polynomial number of times.In this work,we propose continuous version of non-malleable codes from block ciphers in split-state model.Our construction provides security against polynomial number of tampering attacks and it preserves non-malleability.When the tam-pering experiment triggers self-destruct,the security of continuously non-malleable code reduces to security of the underlying leakage resilient storage.展开更多
With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propo...With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks.展开更多
This paper presents a characteristic more efficient and has better properties than the set method for solving Boolean equations, which is general characteristic set method. In particular, the authors give a disjoint a...This paper presents a characteristic more efficient and has better properties than the set method for solving Boolean equations, which is general characteristic set method. In particular, the authors give a disjoint and monic zero decomposition algorithm for the zero set of a Boolean equation system and an explicit formula for the number of solutions of a Boolean equation system. The authors also prove that a characteristic set can be computed with a polynomial number of multiplications of Boolean polynomials in terms of the number of variables. As experiments, the proposed method is used to solve equations from cryptanalysis of a class of stream ciphers based on nonlinear filter generators. Extensive experiments show that the method is quite effective.展开更多
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e...Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.展开更多
A resynchronization attack is proposed on stream ciphers filtered by Maiorana-McFarland (M-M) functions and equipped with a linear resynchronization mechanism. The proposed attack utilizes the linear weakness of the...A resynchronization attack is proposed on stream ciphers filtered by Maiorana-McFarland (M-M) functions and equipped with a linear resynchronization mechanism. The proposed attack utilizes the linear weakness of the resynchronization mechanism, the partial linearity of M-M functions, and applies the linear consistency test method to recover the secret key. It is shown that an M-M function should not be implemented by itself but rather in combination with other nonlinear components in stream ciphers using linear mechanisms to prevent the proposed attack. It is also shown that the use of linear resynchronization mechanisms should be avoided despite their high efficiency in stream ciphers filtered by M-M functions.展开更多
Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integra...Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario.However,the openness and heterogeneity of the 6G network cause the problems of network security.To improve the trustworthiness of 6G networks,we propose a trusted computing-based approach for establishing trust relationships inmulti-cloud scenarios.The proposed method shows the relationship of trust based on dual-level verification.It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state within and between cloud units.Firstly,SM3 algorithm establishes the chain of trust for the system’s trusted boot phase.Then,the remote attestation server(RAS)of distributed cloud units verifies the physical servers.Meanwhile,the physical servers use a ring approach to verify the cloud servers.Eventually,the centralized RAS takes one-time authentication to the critical evidence information of distributed cloud unit servers.Simultaneously,the centralized RAS also verifies the evidence of distributed RAS.We establish our proposed approach in a natural OpenStack-based cloud environment.The simulation results show that the proposed method achieves higher security with less than a 1%system performance loss.展开更多
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ...The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.展开更多
Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message i...Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message is split into at least two trivial images called’shares’to cover it.However,such message are always targeted by hackers or dishonest members who attempt to decrypt the message.This can be avoided by not uncovering the secret message without the universal share when it is presented and is typically taken care of,by the trusted party.Hence,in this paper,an optimal and secure double-layered secret image sharing scheme is proposed.The proposed share creation process contains two layers such as threshold-based secret sharing in the first layer and universal share based secret sharing in the second layer.In first layer,Genetic Algorithm(GA)is applied to find the optimal threshold value based on the randomness of the created shares.Then,in the second layer,a novel design of universal share-based secret share creation method is proposed.Finally,Opposition Whale Optimization Algorithm(OWOA)-based optimal key was generated for rectange block cipher to secure each share.This helped in producing high quality reconstruction images.The researcher achieved average experimental outcomes in terms of PSNR and MSE values equal to 55.154225 and 0.79365625 respectively.The average PSNRwas less(49.134475)and average MSE was high(1)in case of existing methods.展开更多
In the digital age, the global character of the Internet has significantly improved our daily lives by providing access to large amounts of knowledge and allowing for seamless connections. However, this enormously int...In the digital age, the global character of the Internet has significantly improved our daily lives by providing access to large amounts of knowledge and allowing for seamless connections. However, this enormously interconnected world is not without its risks. Malicious URLs are a powerful menace, masquerading as legitimate links while holding the intent to hack computer systems or steal sensitive personal information. As the sophistication and frequency of cyberattacks increase, identifying bad URLs has emerged as a critical aspect of cybersecurity. This study presents a new approach that enables the average end-user to check URL safety using Microsoft Excel. Using the powerful VirusTotal API for URL inspections, this study creates an Excel add-in that integrates Python and Excel to deliver a seamless, user-friendly interface. Furthermore, the study improves Excel’s capabilities by allowing users to encrypt and decrypt text communications directly in the spreadsheet. Users may easily encrypt their conversations by simply typing a key and the required text into predefined cells, enhancing their personal cybersecurity with a layer of cryptographic secrecy. This strategy democratizes access to advanced cybersecurity solutions, making attentive digital integrity a feature rather than a daunting burden.展开更多
For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias....For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 260.4 distinct known plaintexts,278.85 time complexity and 261 bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 261.5 distinct known plaintexts,2126.15 time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.展开更多
基金National Natural Science Foundation of China(62372464)。
文摘A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently,to recover massive superpolies,the nested monomial prediction technique,the algorithm based on the divide-and-conquer strategy,and stretching cube attacks were proposed,which have been used to recover a superpoly with over ten million monomials for the NFSR-based stream ciphers such as Trivium and Grain-128AEAD.Nevertheless,when these methods are used to recover superpolies,many invalid calculations are performed,which makes recovering superpolies more difficult.This study finds an interesting observation that can be used to improve the above methods.Based on the observation,a new method is proposed to avoid a part of invalid calculations during the process of recovering superpolies.Then,the new method is applied to the nested monomial prediction technique and an improved superpoly recovery framework is presented.To verify the effectiveness of the proposed scheme,the improved framework is applied to 844-and 846-round Trivium and the exact ANFs of the superpolies is obtained with over one hundred million monomials,showing the improved superpoly recovery technique is powerful.Besides,extensive experiments on other scaled-down variants of NFSR-based stream ciphers show that the proposed scheme indeed could be more efficient on the superpoly recovery against NFSR-based stream ciphers.
基金supported by National Natural Science Foundation of China(Grant No.61502526)。
文摘The compatibility of different quantum algorithms should be considered when these algorithms are combined.In this paper,the method of combining Grover and Simon is studied for the first time,under some preconditions or assumptions.First,we give two preconditions of applying Grover’s algorithm,which ensure that the success probability of finding the marked element is close to 1.Then,based on these two preconditions,it is found out that the success probability of the quantum algorithm for FXconstruction is far less than 1.Furthermore,we give the design method of the Oracle function,and then present the general method of combining Grover and Simon algorithm for attacking block ciphers,with success probability close to 1.
基金supported by the National Natural Science Foundation of China under Grant No. 61572516, 61402523, 61202491, 61272041 and 61272488
文摘In lightweight cryptographic primitives, round functions with only simple operations XOR, modular addition and rotation are widely used nowadays. This kind of ciphers is called ARX ciphers. For ARX ciphers, impossible differential cryptanalysis and zero-correlation linear cryptanalysis are among the most powerful attacks, and the key problems for these two attacks are discovering more and longer impossible differentials(IDs) and zero-correlation linear hulls(ZCLHs). However, finding new IDs and ZCLHs for ARX ciphers has been a manual work for a long time, which has been an obstacle in improving these two attacks. This paper proposes an automatic search method to improve the efficiency of finding new IDs and ZCLHs for ARX ciphers. In order to prove the efficiency of this new tool, we take HIGHT, LEA, SPECK three typical ARX algorithms as examples to explore their longer and new impossible differentials and zero-correlation linear hulls. To the best of our knowledge, this is the first application of automatic search method for ARX ciphers on finding new IDs and ZCLHs. For HIGHT, we find more 17 round IDs and multiple 17 round ZCLHs. This is the first discovery of 17 round ZCLHs for HIGHT. For LEA, we find extra four 10 round IDs and several 9 round ZCLHs. In the specification of LEA, the designers just identified three 10 round IDs and one 7round ZCLH. For SPECK, we find thousands of 6 round IDs and forty-four 6 round ZCLHs. Neither IDs nor ZCLHs of SPECK has been proposed before. The successful application of our new tool shows great potential in improving the impossible differential cryptanalysis and zero-correlation linear cryptanalysis on ARX ciphers..
基金Supported by the National Natural Science Foun-dation of China(60573031) the Foundation of National Laboratoryfor Modern Communications(51436060205J W0305) the Founda-tion of Senior Visiting Scholarship of Fudan University
文摘Timing attacks break a cryptosystem by time measurement to recover keys. Most available countermeasures protect block ciphers based on the safety of modules. This paper gives a complete definition of timing attacks and studies the vulnerability of operations and modules on timing attacks. We present a method to transfer the security of the algorithm to that of secure operations by reduction. As a result, we hopefully tend to reconcile the provable security notions and modem cryptography with real-world implementations of block ciphers.
文摘Wireless sensor networks (WSNs) are exposed to a variety of attacks. The quality and complexity of attacks are rising day by day. The proposed work aims at showing how the complexity of modern attacks is growing accordingly, leading to a similar rise in methods of resistance. Limitations in computational and battery power in sensor nodes are constraints on the diversity of security mechanisms. We must apply only suitable mechanisms to WSN where our approach was motivated by the application of an improved Feistel scheme. The modified accelerated-cipher design uses data-dependent permutations, and can be used for fast hardware, firmware, software and WSN encryption systems. The approach presented showed that ciphers using this approach are less likely to suffer intrusion of differential cryptanalysis than currently used popular WSN ciphers like DES, Camellia and so on.
基金This study is supported by Erciyes University Research Projects Unit with grant number FDK-2016-7085the initials of authors who received the grant are A and B and the URL to sponsors’websites is http://bap.erciyes.edu.tr/。
文摘This paper presents state-of-art cryptanalysis studies on attacks of the substitution and transposition ciphers using various metaheuristic algorithms.Traditional cryptanalysis methods employ an exhaustive search,which is computationally expensive.Therefore,metaheuristics have attracted the interest of researchers in the cryptanalysis field.Metaheuristic algorithms are known for improving the search for the optimum solution and include Genetic Algorithm,Simulated Annealing,Tabu Search,Particle Swarm Optimization,Differential Evolution,Ant Colony,the Artificial Bee Colony,Cuckoo Search,and Firefly algorithms.The most important part of these various applications is deciding the fitness function to guide the search.This review presents how these algorithms have been implemented for cryptanalysis purposes.The paper highlights the results and findings of the studies and determines the gaps in the literature.
文摘Several kinds of stream ciphers—complementary sequences of period sequences,partial sum of period sequences,inverse order sequences and finitely generated sequences,arestudied by using techniques of generating functions.Their minimal polynomials,periods,as wellas generating functions are given.As to finitely generated sequences,the change of their linearcomplexity profiles as well as the relationship between the two generated sequences usder thecase in which the degree of connected polynomials are fixed,are discussed.
文摘We propose a framework for designing randomized stream ciphers with enhanced security. The key attribute of this framework is using of nonlinear bijective mappings or keyless hash functions for random coding. We investigate the computational security of the proposed ciphers against chosen-plaintext-chosen-initialization-vector attacks and show that it is based on the hardness of solving some systems of random nonlinear Boolean equations. We also provide guidelines for choosing components to design randomizers for specified ciphers.
基金Project supported by the National Natural Science Foundation of China(No.62206312)。
文摘At the Annual International Cryptology Conference in 2019,Gohr introduced a deep learning based cryptanalysis technique applicable to the reduced-round lightweight block ciphers with a short block of SPECK32/64.One significant challenge left unstudied by Gohr's work is the implementation of key recovery attacks on large-state block ciphers based on deep learning.The purpose of this paper is to present an improved deep learning based framework for recovering keys for large-state block ciphers.First,we propose a key bit sensitivity test(KBST)based on deep learning to divide the key space objectively.Second,we propose a new method for constructing neural distinguisher combinations to improve a deep learning based key recovery framework for large-state block ciphers and demonstrate its rationality and effectiveness from the perspective of cryptanalysis.Under the improved key recovery framework,we train an efficient neural distinguisher combination for each large-state member of SIMON and SPECK and finally carry out a practical key recovery attack on the large-state members of SIMON and SPECK.Furthermore,we propose that the 13-round SIMON64 attack is the most effective approach for practical key recovery to date.Noteworthly,this is the first attempt to propose deep learning based practical key recovery attacks on18-round SIMON128,19-round SIMON128,14-round SIMON96,and 14-round SIMON64.Additionally,we enhance the outcomes of the practical key recovery attack on SPECK large-state members,which amplifies the success rate of the key recovery attack in comparison to existing results.
文摘Non-malleable code is an encoding scheme that is useful in situations where traditional error correction or detection is impossible to achieve.It ensures with high probability that decoded message is either completely unrelated or the original one,when tampering has no effect.Usually,standard version of non-malleable codes provide security against one time tampering attack.Block ciphers are successfully employed in the construction of non-malleable codes.Such construction fails to provide security when an adversary tampers the codeword more than once.Continuously non-malleable codes further allow an attacker to tamper the message for polynomial number of times.In this work,we propose continuous version of non-malleable codes from block ciphers in split-state model.Our construction provides security against polynomial number of tampering attacks and it preserves non-malleability.When the tam-pering experiment triggers self-destruct,the security of continuously non-malleable code reduces to security of the underlying leakage resilient storage.
基金Project supported by the Shandong Province Natural Science Foundation(Grant Nos.ZR2023MF089,R2023QF036,and ZR2021MF073)the Industry-University-Research Collaborative Innovation Fund Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant Nos.2021CXY-13 and 2021CXY-14)+2 种基金the Major Scientific and Technological Innovation Projects of Shandong Province(Grant No.2020CXGC010901)the Talent Research Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2023RCKY054)the Basic Research Projects of Science,Education and Industry Integration Pilot Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2023PX081)。
文摘With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks.
基金This research is partially supported by a National Key Basic Research Project of China under Grant No.2004CB318000.
文摘This paper presents a characteristic more efficient and has better properties than the set method for solving Boolean equations, which is general characteristic set method. In particular, the authors give a disjoint and monic zero decomposition algorithm for the zero set of a Boolean equation system and an explicit formula for the number of solutions of a Boolean equation system. The authors also prove that a characteristic set can be computed with a polynomial number of multiplications of Boolean polynomials in terms of the number of variables. As experiments, the proposed method is used to solve equations from cryptanalysis of a class of stream ciphers based on nonlinear filter generators. Extensive experiments show that the method is quite effective.
基金supported in part by the National Natural Science Foundation of China Project under Grant 62075147the Suzhou Industry Technological Innovation Projects under Grant SYG202348.
文摘Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.
基金Acknowledgements This work was supported in part by the Major State Basic Research Development Program of China (973 Program) (2007CB311201), and the National Natural Science Foundation of China (Grant Nos. 60833008 and 60803149), and foundation of Guangxi key laboratory of information and communication (20902).
文摘A resynchronization attack is proposed on stream ciphers filtered by Maiorana-McFarland (M-M) functions and equipped with a linear resynchronization mechanism. The proposed attack utilizes the linear weakness of the resynchronization mechanism, the partial linearity of M-M functions, and applies the linear consistency test method to recover the secret key. It is shown that an M-M function should not be implemented by itself but rather in combination with other nonlinear components in stream ciphers using linear mechanisms to prevent the proposed attack. It is also shown that the use of linear resynchronization mechanisms should be avoided despite their high efficiency in stream ciphers filtered by M-M functions.
基金This work was supported by the Ministry of Education and China Mobile Research Fund Project(MCM20200102)the 173 Project(No.2019-JCJQ-ZD-342-00)+2 种基金the National Natural Science Foundation of China(No.U19A2081)the Fundamental Research Funds for the Central Universities(No.2023SCU12129)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129).
文摘Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario.However,the openness and heterogeneity of the 6G network cause the problems of network security.To improve the trustworthiness of 6G networks,we propose a trusted computing-based approach for establishing trust relationships inmulti-cloud scenarios.The proposed method shows the relationship of trust based on dual-level verification.It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state within and between cloud units.Firstly,SM3 algorithm establishes the chain of trust for the system’s trusted boot phase.Then,the remote attestation server(RAS)of distributed cloud units verifies the physical servers.Meanwhile,the physical servers use a ring approach to verify the cloud servers.Eventually,the centralized RAS takes one-time authentication to the critical evidence information of distributed cloud unit servers.Simultaneously,the centralized RAS also verifies the evidence of distributed RAS.We establish our proposed approach in a natural OpenStack-based cloud environment.The simulation results show that the proposed method achieves higher security with less than a 1%system performance loss.
基金supported by project TRANSACT funded under H2020-EU.2.1.1.-INDUSTRIAL LEADERSHIP-Leadership in Enabling and Industrial Technologies-Information and Communication Technologies(Grant Agreement ID:101007260).
文摘The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.
基金supported by RUSA PHASE 2.0,Alagappa University,Karaikudi,India。
文摘Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message is split into at least two trivial images called’shares’to cover it.However,such message are always targeted by hackers or dishonest members who attempt to decrypt the message.This can be avoided by not uncovering the secret message without the universal share when it is presented and is typically taken care of,by the trusted party.Hence,in this paper,an optimal and secure double-layered secret image sharing scheme is proposed.The proposed share creation process contains two layers such as threshold-based secret sharing in the first layer and universal share based secret sharing in the second layer.In first layer,Genetic Algorithm(GA)is applied to find the optimal threshold value based on the randomness of the created shares.Then,in the second layer,a novel design of universal share-based secret share creation method is proposed.Finally,Opposition Whale Optimization Algorithm(OWOA)-based optimal key was generated for rectange block cipher to secure each share.This helped in producing high quality reconstruction images.The researcher achieved average experimental outcomes in terms of PSNR and MSE values equal to 55.154225 and 0.79365625 respectively.The average PSNRwas less(49.134475)and average MSE was high(1)in case of existing methods.
文摘In the digital age, the global character of the Internet has significantly improved our daily lives by providing access to large amounts of knowledge and allowing for seamless connections. However, this enormously interconnected world is not without its risks. Malicious URLs are a powerful menace, masquerading as legitimate links while holding the intent to hack computer systems or steal sensitive personal information. As the sophistication and frequency of cyberattacks increase, identifying bad URLs has emerged as a critical aspect of cybersecurity. This study presents a new approach that enables the average end-user to check URL safety using Microsoft Excel. Using the powerful VirusTotal API for URL inspections, this study creates an Excel add-in that integrates Python and Excel to deliver a seamless, user-friendly interface. Furthermore, the study improves Excel’s capabilities by allowing users to encrypt and decrypt text communications directly in the spreadsheet. Users may easily encrypt their conversations by simply typing a key and the required text into predefined cells, enhancing their personal cybersecurity with a layer of cryptographic secrecy. This strategy democratizes access to advanced cybersecurity solutions, making attentive digital integrity a feature rather than a daunting burden.
基金the National Natural Science Foundation of China(Grant No.61379138).
文摘For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 260.4 distinct known plaintexts,278.85 time complexity and 261 bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 261.5 distinct known plaintexts,2126.15 time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.