The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and sl...The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and slag from circulating fluidized bed boilers has a similar ultimate cracking load coefficient as the ordinary cement concrete and a higher bending moment limit.Under the same load,it has a smaller deformation than the ordinary concrete.展开更多
A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four type...A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.展开更多
An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess...An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.展开更多
This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduce...This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.展开更多
Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO<...Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> considered to be a stimulant for blast furnace slag (BFS). This study presents an experimental investigation of the compressive strength and heavy metal ions immobilization properties of cement-free materials comprising CFBA, BFS, and DSG. The feasibility of manufacturing foamed concrete using these materials was examined, and field test of foamed concrete was conducted. Experimentally, the flow, compressive strength, and heavy metal ions concentration were evaluated via inductively coupled plasma atomic emission spectroscopy (ICP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">AES) of the paste and foamed concrete. The experimental investigation revealed the self-healing hardening ability of fluidized bed boiler ash. In addition, the compressive strength was increased with the increasing replacement rates of BFS and DSG in the CFBA paste, and the compressive strength of 14.6</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">17.2 MPa was recorded over 28 days of curing. From the result obtained, the feasibility of manufacturing foamed concrete with a foam volume </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">120 L, incorporating the aforementioned materials, is confirmed. It was also found that after 28 days of age, a 7.9-MPa compressive strength of the foamed concrete was attained, and heavy metal ions elution in this foamed concrete was also significantly reduced. Therefore, CFBA, BFS, and DSG could be used as a binder for the foamed concrete.展开更多
This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of ...This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The infuence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N2O were proposed.展开更多
The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the ma...The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the main phase was successfully synthesized via a hydrothermal method by using CFBFA as the raw material.The effects of hydrothermal temperature,time,and added CTAB amount on the characterizations of synthesized materials were investigated by XRD,SEM,and XPS.The properties of the optimal zeolitic material and its adsorption performance for Pb^(2+)in aqueous solution were evaluated.The influences of pH,initial concentration,dosage,and temperature on Pb^(2+)adsorption were also examined.Results revealed the following optimal parameters for the synthesis of zeolitic material:NaOH concentration of 2 mol·L^(-1),solid-to-liquid ratio of 1:10 g·ml^(-1),hydrothermal temperature of 110℃,hydrothermal time of 9 h,and CTAB amount of 1 g(per 100 ml solution).The adsorption capacities of the zeolitic material reached 329.67,424.69,and 542.22 mg·g^(-1) when the pH values of aqueous solution were 5,6,and 7,respectively.The Pb^(2+)removal efficiency can reach more than 99%in aqueous solution with the initial concentrations of 100-300 mg·L^(-1) under pH 6 and suitable adsorbent dosage.The adsorption and kinetics of Pb^(2+)on the zeolitic material can be described by Langmuir isotherm and pseudo-second-order kinetic models,respectively.The ion exchange between Pb^(2+)and Na^(+)and chemisorption are the main adsorption mechanism.All these findings imply that the synthesis of low-cost adsorbent for Pb^(2+)removal from weak acid and neutral aqueous solution provides a highly effective method to utilize CFBFA.展开更多
This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).U...This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power.展开更多
The supercritical circulating fluidized bed(CFB)boiler,which combines the advantages of CFB combustion with low cost emission control and supercritical steam cycle with high efficiency of coal energy,is believed to be...The supercritical circulating fluidized bed(CFB)boiler,which combines the advantages of CFB combustion with low cost emission control and supercritical steam cycle with high efficiency of coal energy,is believed to be the future of CFB combustion technology.It is also of greatest importance for low rank coal utilization in China.Different from the supercritical pulverized coal boiler that has been developed more than 50 years,the supercritical CFB boiler is still a new one which requires further investigation.Without any precedentor engineering reference,Chinese researchers have con ducted fundamental research,development,design of the supercritical CFB boilers independently.The design theory and key technology for supercritical CFB boiler were proposed.Key components and novel structures were invented.The first 600 MWe supercritical CFB boiler and its auxiliaries were successfully developed and demonstrated in Baima Power Plant,Shenhua Group as well as the simulator,control technology,installation technology,commissioning technology,system integration and operation technology.Compared with the 460 MWe supercritical CFB in Poland,developed in the same period and the only other supercritical one of commercial running in the word beside Baima,the 600 MWe one in Baima has a better performance.Besides,supercritical CFB boilers of 350 MWe have been developed and widely commercialized in China.In this paper,the updated progress of 660 MWe ultra-supercritical CFB boilers under development is introduced.展开更多
Based on the fully three-dimensional(3-D)and two-dimensional(2-D)comprehensive CFD(Computational Fluid Dynamics)combustion models for a circulating fluidized bed boiler,a simplified 3-D computational domain considerin...Based on the fully three-dimensional(3-D)and two-dimensional(2-D)comprehensive CFD(Computational Fluid Dynamics)combustion models for a circulating fluidized bed boiler,a simplified 3-D computational domain considering the corrections of furnace side wall openings is proposed.It aims to compensate for the deficiencies of the large amount of computation in the fully 3-D model and improve the air and gas flow treatments at the openings in the simplified 2-D model.Three different computational domains,named as the fully 3-D model,simplified 3-D model and 2-D model,were implemented to perform a comparative CFD analysis in an ultra-supercritical circulating fluidized bed boiler including the hydrodynamics,penetration depth of secondary air,temperature and species distribution.The simulation results computed by the simplified3-D model yield better agreement with the fully 3-D simulation results than those of the 2-D model.The simplified 3-D model is recommended as an alternative computational domain for the conventional 2-D model in the numerical simulation of large-scale circulating fluidized bed boiler.展开更多
A new Kind of measuring method that may be used to measure high temperature circulating solid particles flux in a circulating fluidized bed boiler is studied in this paper. The measuring method is founded on the princ...A new Kind of measuring method that may be used to measure high temperature circulating solid particles flux in a circulating fluidized bed boiler is studied in this paper. The measuring method is founded on the principle of thermal equilibrium. A series of cold tests and hot tests were carried to optimize the structure and collocation of water-cooling tubes and showed that the method had the advantage of simple, accurate, reliable and good applicability for on-line "usage in a circulating fluidized bed boiler.展开更多
Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-struct...Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.展开更多
A comprehensive model for predicting the sulfur retention performance in circulating fluidized bed combustors was developed which involves the different residence times, the wide particle size distribution and the d...A comprehensive model for predicting the sulfur retention performance in circulating fluidized bed combustors was developed which involves the different residence times, the wide particle size distribution and the different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO 4 is highlighted. The simulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle size distribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfur retention performance in circulating fluidized bed (CFB) combustors.展开更多
基金Funded by the Foundation of Scientific and Technological Project of Heilongjiang Province,China (GB01A3022)
文摘The applications of fly ash and slag from circulating fluidized bed boiler were studied as mineral admixture and aggregate for steel reinforced concrete beam.The results show that the concrete beam with fly ash and slag from circulating fluidized bed boilers has a similar ultimate cracking load coefficient as the ordinary cement concrete and a higher bending moment limit.Under the same load,it has a smaller deformation than the ordinary concrete.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL–ChE–18B03)the Municipal Science and Technology Commission of Tianjin, China (2009ZCKFGX01900)。
文摘A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.
文摘An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.
基金This paper is an introduction of a key laboratory of SP.
文摘This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.
文摘Recently, a large amount of circulating fluidized bed boiler ash (CFBA) and desulfurization gypsum (DSG) has been produced, and it is essential to develop technology to utilize them. These materials have CaO and SO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> considered to be a stimulant for blast furnace slag (BFS). This study presents an experimental investigation of the compressive strength and heavy metal ions immobilization properties of cement-free materials comprising CFBA, BFS, and DSG. The feasibility of manufacturing foamed concrete using these materials was examined, and field test of foamed concrete was conducted. Experimentally, the flow, compressive strength, and heavy metal ions concentration were evaluated via inductively coupled plasma atomic emission spectroscopy (ICP</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">AES) of the paste and foamed concrete. The experimental investigation revealed the self-healing hardening ability of fluidized bed boiler ash. In addition, the compressive strength was increased with the increasing replacement rates of BFS and DSG in the CFBA paste, and the compressive strength of 14.6</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> - </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">17.2 MPa was recorded over 28 days of curing. From the result obtained, the feasibility of manufacturing foamed concrete with a foam volume </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">120 L, incorporating the aforementioned materials, is confirmed. It was also found that after 28 days of age, a 7.9-MPa compressive strength of the foamed concrete was attained, and heavy metal ions elution in this foamed concrete was also significantly reduced. Therefore, CFBA, BFS, and DSG could be used as a binder for the foamed concrete.
基金Project supported by the National Natural Science Foundation of China (No. 90210034, 50576101,20221603)
文摘This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The infuence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N2O were proposed.
基金supported by National Natural Science Foundation of China(22078181,U1810205)the Bidding Project of Shanxi Province(20191101007).
文摘The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA)still faces great challenges because of its unique characteristics.In this study,a zeolitic material with Na-P1 zeolite as the main phase was successfully synthesized via a hydrothermal method by using CFBFA as the raw material.The effects of hydrothermal temperature,time,and added CTAB amount on the characterizations of synthesized materials were investigated by XRD,SEM,and XPS.The properties of the optimal zeolitic material and its adsorption performance for Pb^(2+)in aqueous solution were evaluated.The influences of pH,initial concentration,dosage,and temperature on Pb^(2+)adsorption were also examined.Results revealed the following optimal parameters for the synthesis of zeolitic material:NaOH concentration of 2 mol·L^(-1),solid-to-liquid ratio of 1:10 g·ml^(-1),hydrothermal temperature of 110℃,hydrothermal time of 9 h,and CTAB amount of 1 g(per 100 ml solution).The adsorption capacities of the zeolitic material reached 329.67,424.69,and 542.22 mg·g^(-1) when the pH values of aqueous solution were 5,6,and 7,respectively.The Pb^(2+)removal efficiency can reach more than 99%in aqueous solution with the initial concentrations of 100-300 mg·L^(-1) under pH 6 and suitable adsorbent dosage.The adsorption and kinetics of Pb^(2+)on the zeolitic material can be described by Langmuir isotherm and pseudo-second-order kinetic models,respectively.The ion exchange between Pb^(2+)and Na^(+)and chemisorption are the main adsorption mechanism.All these findings imply that the synthesis of low-cost adsorbent for Pb^(2+)removal from weak acid and neutral aqueous solution provides a highly effective method to utilize CFBFA.
文摘This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power.
文摘The supercritical circulating fluidized bed(CFB)boiler,which combines the advantages of CFB combustion with low cost emission control and supercritical steam cycle with high efficiency of coal energy,is believed to be the future of CFB combustion technology.It is also of greatest importance for low rank coal utilization in China.Different from the supercritical pulverized coal boiler that has been developed more than 50 years,the supercritical CFB boiler is still a new one which requires further investigation.Without any precedentor engineering reference,Chinese researchers have con ducted fundamental research,development,design of the supercritical CFB boilers independently.The design theory and key technology for supercritical CFB boiler were proposed.Key components and novel structures were invented.The first 600 MWe supercritical CFB boiler and its auxiliaries were successfully developed and demonstrated in Baima Power Plant,Shenhua Group as well as the simulator,control technology,installation technology,commissioning technology,system integration and operation technology.Compared with the 460 MWe supercritical CFB in Poland,developed in the same period and the only other supercritical one of commercial running in the word beside Baima,the 600 MWe one in Baima has a better performance.Besides,supercritical CFB boilers of 350 MWe have been developed and widely commercialized in China.In this paper,the updated progress of 660 MWe ultra-supercritical CFB boilers under development is introduced.
基金by the Key Project of the National Research Program of China(Grant No.2020YFB0606201)。
文摘Based on the fully three-dimensional(3-D)and two-dimensional(2-D)comprehensive CFD(Computational Fluid Dynamics)combustion models for a circulating fluidized bed boiler,a simplified 3-D computational domain considering the corrections of furnace side wall openings is proposed.It aims to compensate for the deficiencies of the large amount of computation in the fully 3-D model and improve the air and gas flow treatments at the openings in the simplified 2-D model.Three different computational domains,named as the fully 3-D model,simplified 3-D model and 2-D model,were implemented to perform a comparative CFD analysis in an ultra-supercritical circulating fluidized bed boiler including the hydrodynamics,penetration depth of secondary air,temperature and species distribution.The simulation results computed by the simplified3-D model yield better agreement with the fully 3-D simulation results than those of the 2-D model.The simplified 3-D model is recommended as an alternative computational domain for the conventional 2-D model in the numerical simulation of large-scale circulating fluidized bed boiler.
文摘A new Kind of measuring method that may be used to measure high temperature circulating solid particles flux in a circulating fluidized bed boiler is studied in this paper. The measuring method is founded on the principle of thermal equilibrium. A series of cold tests and hot tests were carried to optimize the structure and collocation of water-cooling tubes and showed that the method had the advantage of simple, accurate, reliable and good applicability for on-line "usage in a circulating fluidized bed boiler.
文摘Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.
基金the Major Research Project of the Ninth-Five Plan (1996 2 0 0 0 ) of China (96 - A19- 0 2 - 0 3)
文摘A comprehensive model for predicting the sulfur retention performance in circulating fluidized bed combustors was developed which involves the different residence times, the wide particle size distribution and the different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO 4 is highlighted. The simulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle size distribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfur retention performance in circulating fluidized bed (CFB) combustors.