Background:Starch is an important substance that supplies energy to ruminants.To provide sufficient energy for high-yielding dairy ruminants,they are typically fed starch-enriched diets.However,starch-enriched diets h...Background:Starch is an important substance that supplies energy to ruminants.To provide sufficient energy for high-yielding dairy ruminants,they are typically fed starch-enriched diets.However,starch-enriched diets have been proven to increase the risk of milk fat depression(MFD)in dairy cows.The starch present in ruminant diets could be divided into rumen-degradable starch(RDS)and rumen escaped starch(RES)according to their different degradation sites(rumen or intestine).Goats and cows have different sensitivities to MFD.Data regarding the potential roles of RDS in milk fat synthesis in the mammary tissue of dairy goats and in regulating the occurrence of MFD are limited.Results:Eighteen Guanzhong dairy goats(day in milk=185±12 d)with similar parity,weight,and milk yield were selected and randomly assigned to one of three groups(n=6),which were fed an LRDS diet(Low RDS=20.52%),MRDS diet(Medium RDS=22.15%),or HRDS diet(High RDS=24.88%)for 5 weeks.Compared with that of the LRDS group,the milk fat contents in the MRDS and HRDS groups significantly decreased.The yields of short-,mediumand long-chain fatty acids decreased in the HRDS group.Furthermore,increased RDS significantly decreased ruminal B.fibrisolvens and Pseudobutyrivibrio abundances and increased the trans-10,cis-12 conjugated linoleic acid(CLA)and trans-10 C18:1 contents in the rumen fluid.A multiomics study revealed that the HRDS diet affected mammary lipid metabolism down-regulation of ACSS2,MVD,AGPS,SCD5,FADS2,CERCAM,SC5D,HSD17B7,HSD17B12,ATM,TP53RK,GDF1 and LOC102177400.Remarkably,the significant decrease of INSIG1,whose expression was depressed by trans-10,cis-12 CLA,could reduce the activity of SREBP and,consequently,downregulate the downstream gene expression of SREBF1.Conclusions:HRDS-induced goat MFD resulted from the downregulation of genes involved in lipogenesis,particularly,INSIG1.Specifically,even though the total starch content and the concentrate-to-fiber ratio were the same as those of the high-RDS diet,the low and medium RDS diets did not cause MFD in lactating goats.展开更多
The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against che...The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further anal- ysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes underAOCoverexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture.展开更多
Developing alternatives to antibiotics for prevention of gastrointestinal dysbiosis in early-weaning farmed animals is urgently needed.This study was to explore the potential effects of trans-10,cis-12 conjugated lino...Developing alternatives to antibiotics for prevention of gastrointestinal dysbiosis in early-weaning farmed animals is urgently needed.This study was to explore the potential effects of trans-10,cis-12 conjugated linoleic acid(CLA)on maintaining ruminal homeostasis of young ruminants during the weaning transition period.Thirty neonatal lambs were selected(6 lambs per group)and euthanized for rumen microbial and epithelial analysis.The lambs were weaned at 28 d and experienced the following 5 treatments:euthanized on d 28 as the pre-weaning control(CON0),fed starter feed for 5(CON5)or 21(CON21)d,fed starter feed with 1%of CLA supplemented for 5(CLA5)or 21(CLA21)d.Results showed that the average daily weight gain and dry matter intake were significantly higher in CLA5 than CON5 group.As compared with the CON5 and CON21 group,the relative abundances of volatile fatty acid(VFA)producing bacteria including Bacteroides,Treponema,Parabacteroides and Anaerovibrio,as well as the concentrations of acetate,butyrate and total VFA were significantly increased in CLA5 and CLA21 group,respectively.Integrating microbial profiling and epithelial transcriptome results showed that 7 downregulated inflammatory signaling-related host genes IL2RA,CXCL9,CD4,CCR4,LTB,SPP1,and BCL2A1 with CLA supplementation were significantly negatively correlated with both VFA concentration and VFA producing bacteria,while 3(GPX2,SLC27A2 and ALDH3A1)and 2(GSTM3 and GSTA1)upregulated metabolism-related genes,significantly positively correlated with either VFA concentration or VFA producing bacteria,respectively.To confirm the effects of CLA on epithelial signal transduction,in vitro experiment was further conducted by treating rumen epithelial cells without or with IL-17A+TNF-αfor 12 h after pretreatment of 100μM CLA or not(6 replicates per treatment).The results demonstrated the anti-inflammatory effect of CLA via suppressing the protein expression of NF-кB p-p65/p65 with the activation of peroxisome proliferator-activated receptor gamma(PPARγ).In conclusion,CLA supplementation enhanced the ruminal microbiota-driven transcriptional regulation in healthy rumen epithelial development via rumen VFA production,and CLA may therefore serve as an alternative way to alleviate early-weaning stress and improve physiological and metabolic conditions of young ruminants.展开更多
基金This research was financially supported by the National Key Research and Development Program of China(award number:2017YFD0500500)the Science&Technological Project of Shaanxi Province,China(award number:2017 TSCXL-NY-04-01).
文摘Background:Starch is an important substance that supplies energy to ruminants.To provide sufficient energy for high-yielding dairy ruminants,they are typically fed starch-enriched diets.However,starch-enriched diets have been proven to increase the risk of milk fat depression(MFD)in dairy cows.The starch present in ruminant diets could be divided into rumen-degradable starch(RDS)and rumen escaped starch(RES)according to their different degradation sites(rumen or intestine).Goats and cows have different sensitivities to MFD.Data regarding the potential roles of RDS in milk fat synthesis in the mammary tissue of dairy goats and in regulating the occurrence of MFD are limited.Results:Eighteen Guanzhong dairy goats(day in milk=185±12 d)with similar parity,weight,and milk yield were selected and randomly assigned to one of three groups(n=6),which were fed an LRDS diet(Low RDS=20.52%),MRDS diet(Medium RDS=22.15%),or HRDS diet(High RDS=24.88%)for 5 weeks.Compared with that of the LRDS group,the milk fat contents in the MRDS and HRDS groups significantly decreased.The yields of short-,mediumand long-chain fatty acids decreased in the HRDS group.Furthermore,increased RDS significantly decreased ruminal B.fibrisolvens and Pseudobutyrivibrio abundances and increased the trans-10,cis-12 conjugated linoleic acid(CLA)and trans-10 C18:1 contents in the rumen fluid.A multiomics study revealed that the HRDS diet affected mammary lipid metabolism down-regulation of ACSS2,MVD,AGPS,SCD5,FADS2,CERCAM,SC5D,HSD17B7,HSD17B12,ATM,TP53RK,GDF1 and LOC102177400.Remarkably,the significant decrease of INSIG1,whose expression was depressed by trans-10,cis-12 CLA,could reduce the activity of SREBP and,consequently,downregulate the downstream gene expression of SREBF1.Conclusions:HRDS-induced goat MFD resulted from the downregulation of genes involved in lipogenesis,particularly,INSIG1.Specifically,even though the total starch content and the concentrate-to-fiber ratio were the same as those of the high-RDS diet,the low and medium RDS diets did not cause MFD in lactating goats.
基金This study was supported by the National Basic Research Program of China (2010CB126200) and the National Natural Science Foundation of China (31371949).
文摘The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further anal- ysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes underAOCoverexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture.
基金This work was supported by the National Natural Science Foundation of China(No.31702133)the Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences(No.Y2021GH18-2).
文摘Developing alternatives to antibiotics for prevention of gastrointestinal dysbiosis in early-weaning farmed animals is urgently needed.This study was to explore the potential effects of trans-10,cis-12 conjugated linoleic acid(CLA)on maintaining ruminal homeostasis of young ruminants during the weaning transition period.Thirty neonatal lambs were selected(6 lambs per group)and euthanized for rumen microbial and epithelial analysis.The lambs were weaned at 28 d and experienced the following 5 treatments:euthanized on d 28 as the pre-weaning control(CON0),fed starter feed for 5(CON5)or 21(CON21)d,fed starter feed with 1%of CLA supplemented for 5(CLA5)or 21(CLA21)d.Results showed that the average daily weight gain and dry matter intake were significantly higher in CLA5 than CON5 group.As compared with the CON5 and CON21 group,the relative abundances of volatile fatty acid(VFA)producing bacteria including Bacteroides,Treponema,Parabacteroides and Anaerovibrio,as well as the concentrations of acetate,butyrate and total VFA were significantly increased in CLA5 and CLA21 group,respectively.Integrating microbial profiling and epithelial transcriptome results showed that 7 downregulated inflammatory signaling-related host genes IL2RA,CXCL9,CD4,CCR4,LTB,SPP1,and BCL2A1 with CLA supplementation were significantly negatively correlated with both VFA concentration and VFA producing bacteria,while 3(GPX2,SLC27A2 and ALDH3A1)and 2(GSTM3 and GSTA1)upregulated metabolism-related genes,significantly positively correlated with either VFA concentration or VFA producing bacteria,respectively.To confirm the effects of CLA on epithelial signal transduction,in vitro experiment was further conducted by treating rumen epithelial cells without or with IL-17A+TNF-αfor 12 h after pretreatment of 100μM CLA or not(6 replicates per treatment).The results demonstrated the anti-inflammatory effect of CLA via suppressing the protein expression of NF-кB p-p65/p65 with the activation of peroxisome proliferator-activated receptor gamma(PPARγ).In conclusion,CLA supplementation enhanced the ruminal microbiota-driven transcriptional regulation in healthy rumen epithelial development via rumen VFA production,and CLA may therefore serve as an alternative way to alleviate early-weaning stress and improve physiological and metabolic conditions of young ruminants.