For new renewable clean energy,triboelectric nanogenerators(TENGs)have shown great potential in response to the world energy crisis.Nevertheless,the alternating-current signal generated by a TENG needs to be converted...For new renewable clean energy,triboelectric nanogenerators(TENGs)have shown great potential in response to the world energy crisis.Nevertheless,the alternating-current signal generated by a TENG needs to be converted into a direct-current signal to be effective in applications.Therefore,a power management circuit,comprising a clamp rectifier circuit and a mechanical switch,is proposed for the conversion and produces a signal having a low ripple coefficient.The power management circuit adopts a clamp circuit as the rectifier circuit to increase the rectified voltage,and reduces the loss resulted from the components by reducing the use of discrete components;the electronic switch in the buck regulator circuit is replaced with a mechanical switch to reduce cost and complexity.In a series of experiments,this power management circuit displayed a stable output voltage with a ripple voltage of 0.07 V,crest factor of 1.01,and ripple coefficient of 2.2%.The TENG provides a feasible method to generate stable electric energy and to supply power to low-consumption electronic devices.展开更多
A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. ...A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. The special structure overcomes other shortcomings in this clamp circuit. Under fast power-up events, the gate voltage of the clamp MOSFET does not rise as quickly as under ESD events, the special structure can keep the clamp MOSFET thoroughly off. Under a falsely triggered event, the special structure can turn off the clamp MOSFET in a short time. The clamp circuit can also reject the power supply noise effectively. Simulation results show that the clamp circuit avoids fast false triggering events such as a 30 ns/1.8 V power-up, maintains a 1.2 μs delay time and a 2.14 μs turn-off time, and reduces to about 70% of the RC time constant. It is believed that the proposed clamp circuit can be widely used in high-speed integrated circuits.展开更多
This work presents the design of a novel static-triggered power-rail electrostatic discharge(ESD)clamp circuit. The superior transient-noise immunity of the static ESD detection mechanism over the transient one is fir...This work presents the design of a novel static-triggered power-rail electrostatic discharge(ESD)clamp circuit. The superior transient-noise immunity of the static ESD detection mechanism over the transient one is firstly discussed. Based on the discussion, a novel power-rail ESD clamp circuit utilizing the static ESD detection mechanism is proposed. By skillfully incorporating a thyristor delay stage into the trigger circuit(TC), the proposed circuit achieves the best ESD-conduction behavior while consuming the lowest leakage current(Ileak) at the normal bias voltage among all investigated circuits in this work. In addition, the proposed circuit achieves an excellent false-triggering immunity against fast power-up pulses. All investigated circuits are fabricated in a 65-nm CMOS process. Performance superiorities of the proposed circuit are fully verified by both simulation and test results. Moreover, the proposed circuit offers an efficient on-chip ESD protection scheme considering the worst discharge case in the utilized process.展开更多
Induction motor is the most sought after motor in the industry for excellent performance characteristics and robustness. Developments in the Power Electronic circuitry have revolutionised the induction motor industry ...Induction motor is the most sought after motor in the industry for excellent performance characteristics and robustness. Developments in the Power Electronic circuitry have revolutionised the induction motor industry leading to the developments in various control strategies and circuits for motor control. Direct Torque Control (DTC) is one of the excellent control strategies preferred by industries for controlling the torque and flux in an induction machine. The main drawback of DTC is the presence of torque ripple which is slightly more than the acceptable limit. There are various parameters that introduce ripples in the electromagnetic torque, one of them being the type of inverter circuit. There are various types of inverter circuits available and the effect of each of them in the production of torque ripple is different. This work is an attempt to identify the influence of various multilevel inverter circuits on the torque ripple level and to propose the best inverter circuit. The influence of multilevel diode clamped inverter and cascaded H bridge inverter circuits on torque ripple minimization, is analysed using simulation studies for identifying the most suitable multilevel inverter circuit which gives minimum torque ripple. The results obtained from the simulation studies are validated by hardware implementation on 0.75 kW induction motor.展开更多
文中提出一种非隔离型软开关高增益准Z源DC-DC变换器。变换器具有输入电流连续、输入与输出供地、高电压增益以及开关器件应力小等优点。同时,变换器中所有开关管都工作在零电压开关(zero voltage switching,ZVS)条件下,所有二极管都工...文中提出一种非隔离型软开关高增益准Z源DC-DC变换器。变换器具有输入电流连续、输入与输出供地、高电压增益以及开关器件应力小等优点。同时,变换器中所有开关管都工作在零电压开关(zero voltage switching,ZVS)条件下,所有二极管都工作在零电压零电流开关(zero-voltage zero-current switching,ZVZCS)条件下,可以减小开关管的开关损耗以及二极管的反向恢复损耗。通过引入三耦合绕组提高变换器电压增益,同时,有源钳位电路的加入减小了开关管两端的电压尖峰。较小感值的耦合电感相应的铜损小、体积小,进而提高了变换器的效率和功率密度。深入分析变换器的工作模态,推导变换器的电压增益以及元器件的电压、电流应力,进行稳态分析和参数设计。最后,搭建一台100 kHz、200 W、38~380 V的实验样机,变换器在额定功率的效率为96.13%,实验结果与理论分析相吻合,证明所提变换器的可行性。展开更多
基金the supports received from the Scientific Research Project of Education Department of Jilin Province(No.JJKH20210736KJ)the National Key R&D Project from the Minister of Science and Technology(Nos.2016YFA0202701 and 2016YFA0202704)the Beijing Municipal Science and Technology Commission(No.Z171100002017017).
文摘For new renewable clean energy,triboelectric nanogenerators(TENGs)have shown great potential in response to the world energy crisis.Nevertheless,the alternating-current signal generated by a TENG needs to be converted into a direct-current signal to be effective in applications.Therefore,a power management circuit,comprising a clamp rectifier circuit and a mechanical switch,is proposed for the conversion and produces a signal having a low ripple coefficient.The power management circuit adopts a clamp circuit as the rectifier circuit to increase the rectified voltage,and reduces the loss resulted from the components by reducing the use of discrete components;the electronic switch in the buck regulator circuit is replaced with a mechanical switch to reduce cost and complexity.In a series of experiments,this power management circuit displayed a stable output voltage with a ripple voltage of 0.07 V,crest factor of 1.01,and ripple coefficient of 2.2%.The TENG provides a feasible method to generate stable electric energy and to supply power to low-consumption electronic devices.
基金supported by the National Natural Science Foundation of China(Nos.60976068,60936005)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(No.708083)
文摘A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. The special structure overcomes other shortcomings in this clamp circuit. Under fast power-up events, the gate voltage of the clamp MOSFET does not rise as quickly as under ESD events, the special structure can keep the clamp MOSFET thoroughly off. Under a falsely triggered event, the special structure can turn off the clamp MOSFET in a short time. The clamp circuit can also reject the power supply noise effectively. Simulation results show that the clamp circuit avoids fast false triggering events such as a 30 ns/1.8 V power-up, maintains a 1.2 μs delay time and a 2.14 μs turn-off time, and reduces to about 70% of the RC time constant. It is believed that the proposed clamp circuit can be widely used in high-speed integrated circuits.
基金supported by National Science and Technology Major Project of China(Grant No.2013ZX02303002)
文摘This work presents the design of a novel static-triggered power-rail electrostatic discharge(ESD)clamp circuit. The superior transient-noise immunity of the static ESD detection mechanism over the transient one is firstly discussed. Based on the discussion, a novel power-rail ESD clamp circuit utilizing the static ESD detection mechanism is proposed. By skillfully incorporating a thyristor delay stage into the trigger circuit(TC), the proposed circuit achieves the best ESD-conduction behavior while consuming the lowest leakage current(Ileak) at the normal bias voltage among all investigated circuits in this work. In addition, the proposed circuit achieves an excellent false-triggering immunity against fast power-up pulses. All investigated circuits are fabricated in a 65-nm CMOS process. Performance superiorities of the proposed circuit are fully verified by both simulation and test results. Moreover, the proposed circuit offers an efficient on-chip ESD protection scheme considering the worst discharge case in the utilized process.
文摘Induction motor is the most sought after motor in the industry for excellent performance characteristics and robustness. Developments in the Power Electronic circuitry have revolutionised the induction motor industry leading to the developments in various control strategies and circuits for motor control. Direct Torque Control (DTC) is one of the excellent control strategies preferred by industries for controlling the torque and flux in an induction machine. The main drawback of DTC is the presence of torque ripple which is slightly more than the acceptable limit. There are various parameters that introduce ripples in the electromagnetic torque, one of them being the type of inverter circuit. There are various types of inverter circuits available and the effect of each of them in the production of torque ripple is different. This work is an attempt to identify the influence of various multilevel inverter circuits on the torque ripple level and to propose the best inverter circuit. The influence of multilevel diode clamped inverter and cascaded H bridge inverter circuits on torque ripple minimization, is analysed using simulation studies for identifying the most suitable multilevel inverter circuit which gives minimum torque ripple. The results obtained from the simulation studies are validated by hardware implementation on 0.75 kW induction motor.