Subalpine fir decline (SFD) has killed more trees in Colorado's high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic fact...Subalpine fir decline (SFD) has killed more trees in Colorado's high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic factors. We examined the influence of varying combinations of average annual temperature and precipitation on the incidence and distribution of SFD. Climatic transition matrices generated in this study indicate that most healthy trees are found in climatic zones with moderate to low temperatures and high precipitation; whereas, SFD occurs mostly in zones of moderate temperatures and moderate precipitation. The contrasting distributions define an environmental mismatch. Forests matched with favorable climatic conditions thrive; those that are mismatched can become vulnerable to decline disease.展开更多
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species,belonging to three common functional groups (forbs,grasses and sedges) at subalpine (3700 m ASL),alpine (4300 m ASL) and subniva...Plant traits and individual plant biomass allocation of 57 perennial herbaceous species,belonging to three common functional groups (forbs,grasses and sedges) at subalpine (3700 m ASL),alpine (4300 m ASL) and subnival (≥5000 m ASL) sites were examined to test the hypothesis that at high altitudes,plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts,especially storage organs,as altitude increases,so as to geminate and resist environmental stress.However,results indicate that some divergence in biomass allocation exists among organs.With increasing altitude,the mean fractions of total biomass allocated to aboveground parts decreased.The mean fractions of total biomass allocation to storage organs at the subalpine site (7%±2% S.E.) were distinct from those at the alpine (23%±6%) and subnival (21%±6%) sites,while the proportions of green leaves at all altitudes remained almost constant.At 4300 m and 5000 m,the mean fractions of flower stems decreased by 45% and 41%,respectively,while fine roots increased by 86% and 102%,respectively.Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation,while sedges showed opposite trends.For all three functional groups,leaf area ratio and leaf area root mass ratio decreased,while fine root biomass increased at higher altitudes.Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots,while the proportion of leaves remained stable.It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots.In contrast to forbs and grasses that had high mycorrhizal infection,sedges had higher single leaf area and more root fraction,especially fine roots.展开更多
基金supported by the USDA National Institute of Food and Agriculture,Mc Intire-Stennis
文摘Subalpine fir decline (SFD) has killed more trees in Colorado's high elevation forests than any other insect or disease problem. The widespread nature of this disorder suggests that the cause involves climatic factors. We examined the influence of varying combinations of average annual temperature and precipitation on the incidence and distribution of SFD. Climatic transition matrices generated in this study indicate that most healthy trees are found in climatic zones with moderate to low temperatures and high precipitation; whereas, SFD occurs mostly in zones of moderate temperatures and moderate precipitation. The contrasting distributions define an environmental mismatch. Forests matched with favorable climatic conditions thrive; those that are mismatched can become vulnerable to decline disease.
基金supported by the National Science & Technology Pillar Program (Grant Nos. 2007BAD80B03 and 2007BAC06B01)a West Light Joint Scholar-ship from the Chinese Academy of Sciences in 2008the National Natural Science Foundation of China (Grant Nos. 40771074 and 30700080)
文摘Plant traits and individual plant biomass allocation of 57 perennial herbaceous species,belonging to three common functional groups (forbs,grasses and sedges) at subalpine (3700 m ASL),alpine (4300 m ASL) and subnival (≥5000 m ASL) sites were examined to test the hypothesis that at high altitudes,plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts,especially storage organs,as altitude increases,so as to geminate and resist environmental stress.However,results indicate that some divergence in biomass allocation exists among organs.With increasing altitude,the mean fractions of total biomass allocated to aboveground parts decreased.The mean fractions of total biomass allocation to storage organs at the subalpine site (7%±2% S.E.) were distinct from those at the alpine (23%±6%) and subnival (21%±6%) sites,while the proportions of green leaves at all altitudes remained almost constant.At 4300 m and 5000 m,the mean fractions of flower stems decreased by 45% and 41%,respectively,while fine roots increased by 86% and 102%,respectively.Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation,while sedges showed opposite trends.For all three functional groups,leaf area ratio and leaf area root mass ratio decreased,while fine root biomass increased at higher altitudes.Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots,while the proportion of leaves remained stable.It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots.In contrast to forbs and grasses that had high mycorrhizal infection,sedges had higher single leaf area and more root fraction,especially fine roots.