Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-ti...In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI).展开更多
Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is impera...Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is imperative to enhance the performance of throughput and energy efficiency.In conventional clustering scheme,a single cluster head(CH)is always assigned in each cluster.However,this method has some weaknesses such as overload and premature death of CH when the number of UAVs increased.In order to solve this problem,we propose a dual-cluster-head based medium access control(DCHMAC)scheme for large-scale UAV networks.In DCHMAC,two CHs are elected to manage resource allocation and data forwarding cooperatively.Specifically,two CHs work on different channels.One of CH is used for intra-cluster communication and the other one is for inter-cluster communication.A Markov chain model is developed to analyse the throughput of the network.Simulation result shows that compared with FM-MAC(flying ad hoc networks multi-channel MAC,FM-MAC),DCHMAC improves the throughput by approximately 20%~50%and prolongs the network lifetime by approximately 40%.展开更多
Fusarium head blight(FHB)is one of the most detrimental wheat diseases which greatly decreases the yield and grain quality,especially in the middle and lower reaches of the Yangtze River of China.Fhb1 and Fhb2 are two...Fusarium head blight(FHB)is one of the most detrimental wheat diseases which greatly decreases the yield and grain quality,especially in the middle and lower reaches of the Yangtze River of China.Fhb1 and Fhb2 are two major resistance loci against Fusarium graminearum.Yangmai 15(YM15)is one of the most popular varieties in the middle and lower reaches of the Yangtze River,and it has good weak gluten characters but poor resistance to FHB.Here we used Fhb1 and Fhb2 to improve the FHB resistance of YM15 by a molecular marker-assisted selection(MAS)backcrossing strategy.The selection of agronomic traits was performed for each generation.We successfully selected seven introgressed lines which carry homozygous Fhb1 and Fhb2 with significantly higher FHB resistance than the recurrent parent YM15.Three of the introgressed lines had agronomic and quality characters that were similar to YM15.This study demonstrates that the pyramiding of Fhb1 and Fhb2 could significantly improve the FHB resistance in wheat using the MAS approach.展开更多
Epigenetics is the study of phenotypic variations that do not alter DNA sequences.Cancer epigenetics has grown rapidly over the past few years as epigenetic alterations exist in all human cancers.One of these alterati...Epigenetics is the study of phenotypic variations that do not alter DNA sequences.Cancer epigenetics has grown rapidly over the past few years as epigenetic alterations exist in all human cancers.One of these alterations is DNA methylation;an epigenetic process that regulates gene expression and often occurs at tumor suppressor gene loci in cancer.Therefore,studying this methylation process may shed light on different gene functions that cannot otherwise be interpreted using the changes that occur in DNA sequences.Currently,microarray technologies;such as Illumina Infinium BeadChip assays;are used to study DNA methylation at an extremely large number of varying loci.At each DNA methylation site,a beta value(β)is used to reflect the methylation intensity.Therefore,clustering this data from various types of cancers may lead to the discovery of large partitions that can help objectively classify different types of cancers aswell as identify the relevant loci without user bias.This study proposed a Nested Big Data Clustering Genetic Algorithm(NBDC-GA);a novel evolutionary metaheuristic technique that can perform cluster-based feature selection based on the DNA methylation sites.The efficacy of the NBDC-GA was tested using real-world data sets retrieved from The Cancer Genome Atlas(TCGA);a cancer genomics program created by the NationalCancer Institute(NCI)and the NationalHuman Genome Research Institute.The performance of the NBDC-GA was then compared with that of a recently developed metaheuristic Immuno-Genetic Algorithm(IGA)that was tested using the same data sets.The NBDC-GA outperformed the IGA in terms of convergence performance.Furthermore,the NBDC-GA produced a more robust clustering configuration while simultaneously decreasing the dimensionality of features to a maximumof 67%and of 94.5%for individual cancer type and collective cancer,respectively.The proposed NBDC-GA was also able to identify two chromosomes with highly contrastingDNAmethylations activities that were previously linked to cancer.展开更多
Wireless Sensor Network(WSN)forms an essential part of IoT.It is embedded in the target environment to observe the physical parameters based on the type of application.Sensor nodes inWSN are constrained by different f...Wireless Sensor Network(WSN)forms an essential part of IoT.It is embedded in the target environment to observe the physical parameters based on the type of application.Sensor nodes inWSN are constrained by different features such as memory,bandwidth,energy,and its processing capabilities.In WSN,data transmission process consumes the maximum amount of energy than sensing and processing of the sensors.So,diverse clustering and data aggregation techniques are designed to achieve excellent energy efficiency in WSN.In this view,the current research article presents a novel Type II Fuzzy Logic-based Cluster Head selection with Low Complexity Data Aggregation(T2FLCH-LCDA)technique for WSN.The presented model involves a two-stage process such as clustering and data aggregation.Initially,three input parameters such as residual energy,distance to Base Station(BS),and node centrality are used in T2FLCH technique for CH selection and cluster construction.Besides,the LCDA technique which follows Dictionary Based Encoding(DBE)process is used to perform the data aggregation at CHs.Finally,the aggregated data is transmitted to the BS where it achieves energy efficiency.The experimental validation of the T2FLCH-LCDAtechnique was executed under three different scenarios based on the position of BS.The experimental results revealed that the T2FLCH-LCDA technique achieved maximum energy efficiency,lifetime,Compression Ratio(CR),and power saving than the compared methods.展开更多
To guarantee the security of Internet of Things(IoT)devices,the blockchain tech⁃nology is often applied to clustered IoT networks.However,cluster heads(CHs)need to un⁃dertake additional control tasks.For battery-power...To guarantee the security of Internet of Things(IoT)devices,the blockchain tech⁃nology is often applied to clustered IoT networks.However,cluster heads(CHs)need to un⁃dertake additional control tasks.For battery-powered IoT devices,the conventional CH se⁃lection algorithm is limited.Based on the above problem,an unmanned aerial vehicle(UAV)network assisted clustered IoT system is proposed,and a corresponding UAV CH se⁃lection algorithm is designed.In this scheme,UAVs are selected as CHs to serve IoT clus⁃ters.The proposed CH selection algorithm considers the maximal transmit power,residual energy and distance information of UAVs,which can greatly extend the working life of IoT clusters.Through Monte Carlo simulation,the key performance indexes of the system,in⁃cluding energy consumption,average secrecy rate and the maximal number of data packets received by the base station(BS),are evaluated.The simulation results show that the pro⁃posed algorithm has great advantages compared with the existing CH selection algorithms.展开更多
Wireless sensor networks(WSNs)are characterized by their ability to monitor physical or chemical phenomena in a static or dynamic location by collecting data,and transmit it in a collaborative manner to one or more pr...Wireless sensor networks(WSNs)are characterized by their ability to monitor physical or chemical phenomena in a static or dynamic location by collecting data,and transmit it in a collaborative manner to one or more processing centers wirelessly using a routing protocol.Energy dissipation is one of the most challenging issues due to the limited power supply at the sensor node.All routing protocols are large consumers of energy,as they represent the main source of energy cost through data exchange operation.Clusterbased hierarchical routing algorithms are known for their good performance in energy conservation during active data exchange in WSNs.The most common of this type of protocol is the Low-Energy Adaptive Clustering Hierarchy(LEACH),which suffers from the problem of the pseudo-random selection of cluster head resulting in large power dissipation.This critical issue can be addressed by using an optimization algorithm to improve the LEACH cluster heads selection process,thus increasing the network lifespan.This paper proposes the LEACH-CHIO,a centralized cluster-based energyaware protocol based on the Coronavirus Herd Immunity Optimizer(CHIO)algorithm.CHIO is a newly emerging human-based optimization algorithm that is expected to achieve significant improvement in the LEACH cluster heads selection process.LEACH-CHIO is implemented and its performance is verified by simulating different wireless sensor network scenarios,which consist of a variable number of nodes ranging from 20 to 100.To evaluate the algorithm performances,three evaluation indicators have been examined,namely,power consumption,number of live nodes,and number of incoming packets.The simulation results demonstrated the superiority of the proposed protocol over basic LEACH protocol for the three indicators.展开更多
Due to the development in the field of Wireless Sensor Networks (WSNs), its major application, Wireless Body Area Network (WBAN) has presently become a major area of interest for the developers and researchers. Effici...Due to the development in the field of Wireless Sensor Networks (WSNs), its major application, Wireless Body Area Network (WBAN) has presently become a major area of interest for the developers and researchers. Efficient sensor nodes data collection is the key feature of any effective wireless body area network. Prioritizing nodes and cluster head selection schemes plays an important role in WBAN. Human body exhibits postural mobility which affects distances and connections between different sensor nodes. In this context, we propose maximum consensus based cluster head selection scheme, which allows cluster head selection by using Link State. Nodal priority through transmission power is also introduced to make WBAN more effective. This scheme results in reduced mean power consumption and also reduces network delay. A comparison with IEEE 802.15.6 based CSMA/CA protocol with different locations of cluster head is presented in this paper. These results show that our proposed scheme outperforms Random Cluster head selection, Fixed Cluster head at head, Foot and Belly positions in terms of mean power consumption, network delay, network throughput and bandwidth efficiency.展开更多
Wireless Sensor Networks (WSNs) have been applied in many different areas. Energy efficient algorithms and protocols have become one of the most challenging issues for WSN. Many researchers focused on developing energ...Wireless Sensor Networks (WSNs) have been applied in many different areas. Energy efficient algorithms and protocols have become one of the most challenging issues for WSN. Many researchers focused on developing energy efficient clustering algorithms for WSN, but less research has been concerned in the mobile User Equipment (UE) acting as a Cluster Head (CH) for data transmission between cellular networks and WSNs. In this paper, we propose a cellular-assisted UE CH selection algorithm for the WSN, which considers several parameters to choose the optimal UE gateway CH. We analyze the energy cost of data transmission from a sensor node to the next node or gateway and calculate the whole system energy cost for a WSN. Simulation results show that better system performance, in terms of system energy cost and WSNs life time, can be achieved by using interactive optimization with cellular networks.展开更多
In order to enable clustering to be done under a lower dimension, a new feature selection method for clustering is proposed. This method has three steps which are all carried out in a wrapper framework. First, all the...In order to enable clustering to be done under a lower dimension, a new feature selection method for clustering is proposed. This method has three steps which are all carried out in a wrapper framework. First, all the original features are ranked according to their importance. An evaluation function E(f) used to evaluate the importance of a feature is introduced. Secondly, the set of important features is selected sequentially. Finally, the possible redundant features are removed from the important feature subset. Because the features are selected sequentially, it is not necessary to search through the large feature subset space, thus the efficiency can be improved. Experimental results show that the set of important features for clustering can be found and those unimportant features or features that may hinder the clustering task will be discarded by this method.展开更多
Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method...Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method for text clustering based on expectation maximization and cluster validity is proposed. It uses supervised feature selection method on the intermediate clustering result which is generated during iterative clustering to do feature selection for text clustering; meanwhile, the Davies-Bouldin's index is used to evaluate the intermediate feature subsets indirectly. Then feature subsets are selected according to the curve of the Davies-Bouldin's index. Experiment is carried out on several popular datasets and the results show the advantages of the proposed method.展开更多
As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this...As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme.展开更多
The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature inclu...The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time.展开更多
Wireless Sensor Networks(WSN)have revolutionized the processes involved in industrial communication.However,the most important challenge faced by WSN sensors is the presence of limited energy.Multiple research inves-t...Wireless Sensor Networks(WSN)have revolutionized the processes involved in industrial communication.However,the most important challenge faced by WSN sensors is the presence of limited energy.Multiple research inves-tigations have been conducted so far on how to prolong the energy in WSN.This phenomenon is a result of inability of the network to have battery powered-sensor terminal.Energy-efficient routing on packetflow is a parallel phenomenon to delay nature,whereas the primary energy gets wasted as a result of WSN holes.Energy holes are present in the vicinity of sink and it is an important efficient-routing protocol for WSNs.In order to solve the issues discussed above,an energy-efficient routing protocol is proposed in this study named as Adaptive Route Decision Sink Relocation Protocol using Cluster Head Chain Cycling approach(ARDSR-CHC2H).The proposed method aims at improved communica-tion at sink-inviting routes.At this point,Cluster Head Node(CHN)is selected,since it consumes low energy and permits one node to communicate with others in two groups.The main purpose of the proposed model is to reduce energy con-sumption and define new interchange technology.A comparison of simulation results demonstrates that the proposed algorithm achieved low cluster creation time,better network error and high Packet Delivery Rate with less network failure.展开更多
Feature selection is very important to obtain meaningful and interpretive clustering results from a clustering analysis. In the application of soil data clustering, there is a lack of good understanding of the respons...Feature selection is very important to obtain meaningful and interpretive clustering results from a clustering analysis. In the application of soil data clustering, there is a lack of good understanding of the response of clustering performance to different features subsets. In the present paper, we analyzed the performance differences between k-means, fuzzy c-means, and spectral clustering algorithms in the conditions of different feature subsets of soil data sets. The experimental results demonstrated that the performances of spectral clustering algorithm were generally better than those of k-means and fuzzy c-means with different features subsets. The feature subsets containing environmental attributes helped to improve clustering performances better than those having spatial attributes and produced more accurate and meaningful clustering results. Our results demonstrated that combination of spectral clustering algorithm with the feature subsets containing environmental attributes rather than spatial attributes may be a better choice in applications of soil data clustering.展开更多
CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferrin...CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.展开更多
Cluster analysis in spectroscopy presents some unique challenges due to the specific data characteristics in spectroscopy,namely,high dimensionality and small sample size.In order to improve cluster analysis outcomes,...Cluster analysis in spectroscopy presents some unique challenges due to the specific data characteristics in spectroscopy,namely,high dimensionality and small sample size.In order to improve cluster analysis outcomes,feature selection can be used to remove redundant or irrelevant features and reduce the dimensionality.However,for cluster analysis,this must be done in an unsupervised manner without the benefit of data labels.This paper presents a novel feature selection approach for cluster analysis,utilizing clusterability metrics to remove features that least contribute to a dataset’s tendency to cluster.Two versions are presented and evaluated:The Hopkins clusterability filter which utilizes the Hopkins test for spatial randomness and the Dip clusterability filter which utilizes the Dip test for unimodality.These new techniques,along with a range of existing filter and wrapper feature selection techniques were evaluated on eleven real-world spectroscopy datasets using internal and external clustering indices.Our newly proposed Hopkins clusterability filter performed the best of the six filter techniques evaluated.However,it was observed that results varied greatly for different techniques depending on the specifics of the dataset and the number of features selected,with significant instability observed for most techniques at low numbers of features.It was identified that the genetic algorithm wrapper technique avoided this instability,performed consistently across all datasets and resulted in better results on average than utilizing the all the features in the spectra.展开更多
Recommender system is a tool to suggest items to the users from the extensive history of the user’s feedback.Though,it is an emerging research area concerning academics and industries,where it suffers from sparsity,s...Recommender system is a tool to suggest items to the users from the extensive history of the user’s feedback.Though,it is an emerging research area concerning academics and industries,where it suffers from sparsity,scalability,and cold start problems.This paper addresses sparsity,and scalability problems of model-based collaborative recommender system based on ensemble learning approach and enhanced clustering algorithm for movie recommendations.In this paper,an effective movie recommendation system is proposed by Classification and Regression Tree(CART)algorithm,enhanced Balanced Iterative Reducing and Clustering using Hierarchies(BIRCH)algorithm and truncation method.In this research paper,a new hyper parameters tuning is added in BIRCH algorithm to enhance the cluster formation process,where the proposed algorithm is named as enhanced BIRCH.The proposed model yields quality movie recommendation to the new user using Gradient boost classification with broad coverage.In this paper,the proposed model is tested on Movielens dataset,and the performance is evaluated by means of Mean Absolute Error(MAE),precision,recall and f-measure.The experimental results showed the superiority of proposed model in movie recommendation compared to the existing models.The proposed model obtained 0.52 and 0.57 MAE value on Movielens 100k and 1M datasets.Further,the proposed model obtained 0.83 of precision,0.86 of recall and 0.86 of f-measure on Movielens 100k dataset,which are effective compared to the existing models in movie recommendation.展开更多
An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoo...An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases.展开更多
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.
文摘In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI).
基金supported in part by the Beijing Natural Science Foundation under Grant L192031the National Key Research and Development Program under Grant 2020YFA0711303。
文摘Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is imperative to enhance the performance of throughput and energy efficiency.In conventional clustering scheme,a single cluster head(CH)is always assigned in each cluster.However,this method has some weaknesses such as overload and premature death of CH when the number of UAVs increased.In order to solve this problem,we propose a dual-cluster-head based medium access control(DCHMAC)scheme for large-scale UAV networks.In DCHMAC,two CHs are elected to manage resource allocation and data forwarding cooperatively.Specifically,two CHs work on different channels.One of CH is used for intra-cluster communication and the other one is for inter-cluster communication.A Markov chain model is developed to analyse the throughput of the network.Simulation result shows that compared with FM-MAC(flying ad hoc networks multi-channel MAC,FM-MAC),DCHMAC improves the throughput by approximately 20%~50%and prolongs the network lifetime by approximately 40%.
基金supported by the National Natural Science Foundation of China(31901544 and 2071999)the National Key Research and Development Program of China(2017YFD0100801)。
文摘Fusarium head blight(FHB)is one of the most detrimental wheat diseases which greatly decreases the yield and grain quality,especially in the middle and lower reaches of the Yangtze River of China.Fhb1 and Fhb2 are two major resistance loci against Fusarium graminearum.Yangmai 15(YM15)is one of the most popular varieties in the middle and lower reaches of the Yangtze River,and it has good weak gluten characters but poor resistance to FHB.Here we used Fhb1 and Fhb2 to improve the FHB resistance of YM15 by a molecular marker-assisted selection(MAS)backcrossing strategy.The selection of agronomic traits was performed for each generation.We successfully selected seven introgressed lines which carry homozygous Fhb1 and Fhb2 with significantly higher FHB resistance than the recurrent parent YM15.Three of the introgressed lines had agronomic and quality characters that were similar to YM15.This study demonstrates that the pyramiding of Fhb1 and Fhb2 could significantly improve the FHB resistance in wheat using the MAS approach.
文摘Epigenetics is the study of phenotypic variations that do not alter DNA sequences.Cancer epigenetics has grown rapidly over the past few years as epigenetic alterations exist in all human cancers.One of these alterations is DNA methylation;an epigenetic process that regulates gene expression and often occurs at tumor suppressor gene loci in cancer.Therefore,studying this methylation process may shed light on different gene functions that cannot otherwise be interpreted using the changes that occur in DNA sequences.Currently,microarray technologies;such as Illumina Infinium BeadChip assays;are used to study DNA methylation at an extremely large number of varying loci.At each DNA methylation site,a beta value(β)is used to reflect the methylation intensity.Therefore,clustering this data from various types of cancers may lead to the discovery of large partitions that can help objectively classify different types of cancers aswell as identify the relevant loci without user bias.This study proposed a Nested Big Data Clustering Genetic Algorithm(NBDC-GA);a novel evolutionary metaheuristic technique that can perform cluster-based feature selection based on the DNA methylation sites.The efficacy of the NBDC-GA was tested using real-world data sets retrieved from The Cancer Genome Atlas(TCGA);a cancer genomics program created by the NationalCancer Institute(NCI)and the NationalHuman Genome Research Institute.The performance of the NBDC-GA was then compared with that of a recently developed metaheuristic Immuno-Genetic Algorithm(IGA)that was tested using the same data sets.The NBDC-GA outperformed the IGA in terms of convergence performance.Furthermore,the NBDC-GA produced a more robust clustering configuration while simultaneously decreasing the dimensionality of features to a maximumof 67%and of 94.5%for individual cancer type and collective cancer,respectively.The proposed NBDC-GA was also able to identify two chromosomes with highly contrastingDNAmethylations activities that were previously linked to cancer.
文摘Wireless Sensor Network(WSN)forms an essential part of IoT.It is embedded in the target environment to observe the physical parameters based on the type of application.Sensor nodes inWSN are constrained by different features such as memory,bandwidth,energy,and its processing capabilities.In WSN,data transmission process consumes the maximum amount of energy than sensing and processing of the sensors.So,diverse clustering and data aggregation techniques are designed to achieve excellent energy efficiency in WSN.In this view,the current research article presents a novel Type II Fuzzy Logic-based Cluster Head selection with Low Complexity Data Aggregation(T2FLCH-LCDA)technique for WSN.The presented model involves a two-stage process such as clustering and data aggregation.Initially,three input parameters such as residual energy,distance to Base Station(BS),and node centrality are used in T2FLCH technique for CH selection and cluster construction.Besides,the LCDA technique which follows Dictionary Based Encoding(DBE)process is used to perform the data aggregation at CHs.Finally,the aggregated data is transmitted to the BS where it achieves energy efficiency.The experimental validation of the T2FLCH-LCDAtechnique was executed under three different scenarios based on the position of BS.The experimental results revealed that the T2FLCH-LCDA technique achieved maximum energy efficiency,lifetime,Compression Ratio(CR),and power saving than the compared methods.
文摘To guarantee the security of Internet of Things(IoT)devices,the blockchain tech⁃nology is often applied to clustered IoT networks.However,cluster heads(CHs)need to un⁃dertake additional control tasks.For battery-powered IoT devices,the conventional CH se⁃lection algorithm is limited.Based on the above problem,an unmanned aerial vehicle(UAV)network assisted clustered IoT system is proposed,and a corresponding UAV CH se⁃lection algorithm is designed.In this scheme,UAVs are selected as CHs to serve IoT clus⁃ters.The proposed CH selection algorithm considers the maximal transmit power,residual energy and distance information of UAVs,which can greatly extend the working life of IoT clusters.Through Monte Carlo simulation,the key performance indexes of the system,in⁃cluding energy consumption,average secrecy rate and the maximal number of data packets received by the base station(BS),are evaluated.The simulation results show that the pro⁃posed algorithm has great advantages compared with the existing CH selection algorithms.
文摘Wireless sensor networks(WSNs)are characterized by their ability to monitor physical or chemical phenomena in a static or dynamic location by collecting data,and transmit it in a collaborative manner to one or more processing centers wirelessly using a routing protocol.Energy dissipation is one of the most challenging issues due to the limited power supply at the sensor node.All routing protocols are large consumers of energy,as they represent the main source of energy cost through data exchange operation.Clusterbased hierarchical routing algorithms are known for their good performance in energy conservation during active data exchange in WSNs.The most common of this type of protocol is the Low-Energy Adaptive Clustering Hierarchy(LEACH),which suffers from the problem of the pseudo-random selection of cluster head resulting in large power dissipation.This critical issue can be addressed by using an optimization algorithm to improve the LEACH cluster heads selection process,thus increasing the network lifespan.This paper proposes the LEACH-CHIO,a centralized cluster-based energyaware protocol based on the Coronavirus Herd Immunity Optimizer(CHIO)algorithm.CHIO is a newly emerging human-based optimization algorithm that is expected to achieve significant improvement in the LEACH cluster heads selection process.LEACH-CHIO is implemented and its performance is verified by simulating different wireless sensor network scenarios,which consist of a variable number of nodes ranging from 20 to 100.To evaluate the algorithm performances,three evaluation indicators have been examined,namely,power consumption,number of live nodes,and number of incoming packets.The simulation results demonstrated the superiority of the proposed protocol over basic LEACH protocol for the three indicators.
文摘Due to the development in the field of Wireless Sensor Networks (WSNs), its major application, Wireless Body Area Network (WBAN) has presently become a major area of interest for the developers and researchers. Efficient sensor nodes data collection is the key feature of any effective wireless body area network. Prioritizing nodes and cluster head selection schemes plays an important role in WBAN. Human body exhibits postural mobility which affects distances and connections between different sensor nodes. In this context, we propose maximum consensus based cluster head selection scheme, which allows cluster head selection by using Link State. Nodal priority through transmission power is also introduced to make WBAN more effective. This scheme results in reduced mean power consumption and also reduces network delay. A comparison with IEEE 802.15.6 based CSMA/CA protocol with different locations of cluster head is presented in this paper. These results show that our proposed scheme outperforms Random Cluster head selection, Fixed Cluster head at head, Foot and Belly positions in terms of mean power consumption, network delay, network throughput and bandwidth efficiency.
基金Supported by the National Science and Technology Major Projects of China (No.2011ZX03005-003-02)Shanghai Natural Science Foundation (No.11ZR-1435100)Shanghai Science and Technology Innovation Program(No.11DZ0512500, 12511503300, 12DZ2250200)
文摘Wireless Sensor Networks (WSNs) have been applied in many different areas. Energy efficient algorithms and protocols have become one of the most challenging issues for WSN. Many researchers focused on developing energy efficient clustering algorithms for WSN, but less research has been concerned in the mobile User Equipment (UE) acting as a Cluster Head (CH) for data transmission between cellular networks and WSNs. In this paper, we propose a cellular-assisted UE CH selection algorithm for the WSN, which considers several parameters to choose the optimal UE gateway CH. We analyze the energy cost of data transmission from a sensor node to the next node or gateway and calculate the whole system energy cost for a WSN. Simulation results show that better system performance, in terms of system energy cost and WSNs life time, can be achieved by using interactive optimization with cellular networks.
文摘In order to enable clustering to be done under a lower dimension, a new feature selection method for clustering is proposed. This method has three steps which are all carried out in a wrapper framework. First, all the original features are ranked according to their importance. An evaluation function E(f) used to evaluate the importance of a feature is introduced. Secondly, the set of important features is selected sequentially. Finally, the possible redundant features are removed from the important feature subset. Because the features are selected sequentially, it is not necessary to search through the large feature subset space, thus the efficiency can be improved. Experimental results show that the set of important features for clustering can be found and those unimportant features or features that may hinder the clustering task will be discarded by this method.
基金Supported by the National Natural Science Foundation of China (60503020, 60373066)the Outstanding Young Scientist’s Fund (60425206)+1 种基金the Natural Science Foundation of Jiangsu Province (BK2005060)the Opening Foundation of Jiangsu Key Laboratory of Computer Informa-tion Processing Technology in Soochow University
文摘Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method for text clustering based on expectation maximization and cluster validity is proposed. It uses supervised feature selection method on the intermediate clustering result which is generated during iterative clustering to do feature selection for text clustering; meanwhile, the Davies-Bouldin's index is used to evaluate the intermediate feature subsets indirectly. Then feature subsets are selected according to the curve of the Davies-Bouldin's index. Experiment is carried out on several popular datasets and the results show the advantages of the proposed method.
基金supported in part by the Joint Fund of Science and Technology Department of Liaoning Province and State Key Laboratory of Robotics,China under Grant 2021-KF-22-08in part by the Basic Research Program of Science and Technology of Shenzhen,China under Grant JCYJ20190809161805508in part by the National Natural Science Foundation of China under Grant 62271423 and Grant 41976178.
文摘As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme.
文摘The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time.
文摘Wireless Sensor Networks(WSN)have revolutionized the processes involved in industrial communication.However,the most important challenge faced by WSN sensors is the presence of limited energy.Multiple research inves-tigations have been conducted so far on how to prolong the energy in WSN.This phenomenon is a result of inability of the network to have battery powered-sensor terminal.Energy-efficient routing on packetflow is a parallel phenomenon to delay nature,whereas the primary energy gets wasted as a result of WSN holes.Energy holes are present in the vicinity of sink and it is an important efficient-routing protocol for WSNs.In order to solve the issues discussed above,an energy-efficient routing protocol is proposed in this study named as Adaptive Route Decision Sink Relocation Protocol using Cluster Head Chain Cycling approach(ARDSR-CHC2H).The proposed method aims at improved communica-tion at sink-inviting routes.At this point,Cluster Head Node(CHN)is selected,since it consumes low energy and permits one node to communicate with others in two groups.The main purpose of the proposed model is to reduce energy con-sumption and define new interchange technology.A comparison of simulation results demonstrates that the proposed algorithm achieved low cluster creation time,better network error and high Packet Delivery Rate with less network failure.
文摘Feature selection is very important to obtain meaningful and interpretive clustering results from a clustering analysis. In the application of soil data clustering, there is a lack of good understanding of the response of clustering performance to different features subsets. In the present paper, we analyzed the performance differences between k-means, fuzzy c-means, and spectral clustering algorithms in the conditions of different feature subsets of soil data sets. The experimental results demonstrated that the performances of spectral clustering algorithm were generally better than those of k-means and fuzzy c-means with different features subsets. The feature subsets containing environmental attributes helped to improve clustering performances better than those having spatial attributes and produced more accurate and meaningful clustering results. Our results demonstrated that combination of spectral clustering algorithm with the feature subsets containing environmental attributes rather than spatial attributes may be a better choice in applications of soil data clustering.
文摘CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.
文摘Cluster analysis in spectroscopy presents some unique challenges due to the specific data characteristics in spectroscopy,namely,high dimensionality and small sample size.In order to improve cluster analysis outcomes,feature selection can be used to remove redundant or irrelevant features and reduce the dimensionality.However,for cluster analysis,this must be done in an unsupervised manner without the benefit of data labels.This paper presents a novel feature selection approach for cluster analysis,utilizing clusterability metrics to remove features that least contribute to a dataset’s tendency to cluster.Two versions are presented and evaluated:The Hopkins clusterability filter which utilizes the Hopkins test for spatial randomness and the Dip clusterability filter which utilizes the Dip test for unimodality.These new techniques,along with a range of existing filter and wrapper feature selection techniques were evaluated on eleven real-world spectroscopy datasets using internal and external clustering indices.Our newly proposed Hopkins clusterability filter performed the best of the six filter techniques evaluated.However,it was observed that results varied greatly for different techniques depending on the specifics of the dataset and the number of features selected,with significant instability observed for most techniques at low numbers of features.It was identified that the genetic algorithm wrapper technique avoided this instability,performed consistently across all datasets and resulted in better results on average than utilizing the all the features in the spectra.
文摘Recommender system is a tool to suggest items to the users from the extensive history of the user’s feedback.Though,it is an emerging research area concerning academics and industries,where it suffers from sparsity,scalability,and cold start problems.This paper addresses sparsity,and scalability problems of model-based collaborative recommender system based on ensemble learning approach and enhanced clustering algorithm for movie recommendations.In this paper,an effective movie recommendation system is proposed by Classification and Regression Tree(CART)algorithm,enhanced Balanced Iterative Reducing and Clustering using Hierarchies(BIRCH)algorithm and truncation method.In this research paper,a new hyper parameters tuning is added in BIRCH algorithm to enhance the cluster formation process,where the proposed algorithm is named as enhanced BIRCH.The proposed model yields quality movie recommendation to the new user using Gradient boost classification with broad coverage.In this paper,the proposed model is tested on Movielens dataset,and the performance is evaluated by means of Mean Absolute Error(MAE),precision,recall and f-measure.The experimental results showed the superiority of proposed model in movie recommendation compared to the existing models.The proposed model obtained 0.52 and 0.57 MAE value on Movielens 100k and 1M datasets.Further,the proposed model obtained 0.83 of precision,0.86 of recall and 0.86 of f-measure on Movielens 100k dataset,which are effective compared to the existing models in movie recommendation.
文摘An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases.