Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,for...Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.展开更多
Objective:This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder(PTSD).Methods:The Web of Science database(2007-2022)was searched using the search terms“phytochemical...Objective:This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder(PTSD).Methods:The Web of Science database(2007-2022)was searched using the search terms“phytochemicals”and“PTSD,”and relevant literature was compiled.Network clustering co-occurrence analysis and qualitative narrative review were conducted.Results:Three hundred and one articles were included in the analysis of published research,which has surged since 2015 with nearly half of all relevant articles coming from North America.The category is dominated by neuroscience and neurology,with two journals,Addictive Behaviors and Drug and Alcohol Dependence,publishing the greatest number of papers on these topics.Most studies focused on psychedelic intervention for PTSD.Three timelines show an“ebb and flow”phenomenon between“substance use/marijuana abuse”and“psychedelic medicine/medicinal cannabis.”Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover,serotonin levels,and brain-derived neurotrophic factor expression.Conclusion:Research on phytochemicals and PTSD is unevenly distributed across countries/regions,disciplines,and journals.Since 2015,the research paradigm shifted to constitute the mainstream of psychedelic research thus far,leading to the exploration of botanical active ingredients and molecular mechanisms.Other studies focus on anti-oxidative stress and anti-inflammation.展开更多
BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ...BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions.展开更多
Impact statement Habitat loss has been a primary threat to biodiversity.However,species do not function in isolation but often associate with each other and form complex networks.Thus,revealing how the network complex...Impact statement Habitat loss has been a primary threat to biodiversity.However,species do not function in isolation but often associate with each other and form complex networks.Thus,revealing how the network complexity and stability scale with habitat area will give us more insights into the effects of habitat loss on ecosystems.In this study,we explored the relationships between the island area and the network complexity and stability of soil microbes.We found that the complexity and stability of soil microbial co‐occurrence networks scale positively with island area,indicating that habitat loss will potentially simplify and destabilize soil microbial networks.展开更多
Microeukaryotes and bacteria are key drivers of primary productivity and nutrient cycling in aquaculture ecosystems.Although their diversity and composition have been widely investigated in aquaculture systems,the co-...Microeukaryotes and bacteria are key drivers of primary productivity and nutrient cycling in aquaculture ecosystems.Although their diversity and composition have been widely investigated in aquaculture systems,the co-occurrence bipartite network between microeukaryotes and bacteria remains poorly understood.This study used the bipartite network analysis of high-throughput sequencing datasets to detect the co-occurrence relationships between microeukaryotes and bacteria in water and sediment from coastal aquaculture ponds.Chlorophyta and fungi were dominant phyla in the microeukaryotic–bacterial bipartite networks in water and sediment,respectively.Chlorophyta also had overrepresented links with bacteria in water.Most microeukaryotes and bacteria were classified as generalists,and tended to have symmetric positive and negative links with bacteria in both water and sediment.However,some microeukaryotes with high density of links showed asymmetric links with bacteria in water.Modularity detection in the bipartite network indicated that four microeukaryotes and twelve uncultured bacteria might be potential keystone taxa among the module connections.Moreover,the microeukaryotic–bacterial bipartite network in sediment harbored significantly more nestedness than that in water.The loss of microeukaryotes and generalists will more likely lead to the collapse of positive co-occurrence relationships between microeukaryotes and bacteria in both water and sediment.This study unveils the topology,dominant taxa,keystone species,and robustness in the microeukaryotic–bacterial bipartite networks in coastal aquaculture ecosystems.These species herein can be applied for further management of ecological services,and such knowledge may also be very useful for the regulation of other eutrophic ecosystems.展开更多
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ...Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.展开更多
The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological phenomenon,but there is limited cross-domain research in aquatic environments.We conducted a network statistical analysis and visuali...The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological phenomenon,but there is limited cross-domain research in aquatic environments.We conducted a network statistical analysis and visualization of microbial cross-domain co-occurrence patterns based on DNA sampling of a typical subtropical bay during four seasons,using high-throughput sequencing of both 18S rRNA and 16S rRNA genes.First,we found obvious relationships between network stability and network complexity indices.For example,increased cooperation and modularity were found to weaken the stability of cross-domain networks.Secondly,we found that bacterial operational taxonomic units(OTUs)were the most important contributors to network complexity and stability as they occupied more nodes,constituted more keystone OTUs,built more connections,more importantly,ignoring bacteria led to greater variation in network robustness.Gammaproteobacteria,Alphaproteobacteria,Bacteroidetes,and Actinobacteria were the most ecologically important groups.Finally,we found that the environmental drivers most associated with cross-domain networks varied across seasons(in detail,the network in January was primarily constrained by temperature and salinity,the network in April was primarily constrained by depth and temperature,the network in July was mainly affected by depth,temperature,and salinity,depth was the most important factor affecting the network in October)and that environmental influence was stronger on bacteria than on microeukaryotes.展开更多
Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes i...Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.展开更多
The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms...The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms of the taxonomic composition or functional structure,remains relatively unexplored.A total of 22 sampling sites from two water layers(surface water,SW and 50-m layer water,FW)were collected in this area.The physiochemical parameters of waters,Synechococcus,and bacterial density,as well as the bacterioplankton community composition and distribution pattern,were analyzed.The nutrient concentrations of DIN,DIP,and DSi,Chl-a concentration,and the average abundance of heterobacteria in FW were higher than those in SW.However,temperature and the average abundance of Synechococcus and pico-eukaryotes were higher in SW.A total of 3269 OTUs were assigned,and 2123OTUs were commonly shared;moreover,similar alpha diversity patterns were observed in both SW and FW.The bacterioplankton community showed significantly obvious correlation with salinity,DIP,DIN,and Chl a in both SW and FW.Proteobacteria,Cyanobacteria,Bacteroidota,Actinobacteriota,and Firmicutes were the main phyla while Synechococcus_CC9902,Psychrobacter,and Sulfitobacter were the dominant genera in each sampling site.Most correlations that happened between the OTUs in the cooccurrence network were positive and inter-module.Higher edges and graph density were found in SW,indicating that more correlations occurred,and the community was more complex in SW.This study provided novel knowledge on the bacterioplankton community structure and the correlation characteristics in WSG.展开更多
The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variat...The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood.Using Illumina MiSeq DNA sequencing,we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City:the hilltop(300 m a.s.l.),the hillside(150 m a.s.l.),and the foot of the hill(0 m a.s.l.).The results showed that edaphic properties differed significantly with elevation.Bacterial community composition,rather than alpha diversity,strongly differed among the three elevations(Adonis:R2=0.12,P<0.01).Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH,elevation,total nitrogen(TN),and dissolved organic carbon(DOC).The degree scores,betweenness centralities,and composition of keystone species were distinct among the elevations.These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain.Soil pH and elevation together drove the smallscale elevational distribution of soil bacterial communities.This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients.展开更多
Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be th...Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process,but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage(CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage(SCT, tillage to a depth of 15 cm),inversion tillage(IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage(SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil.In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i...Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.展开更多
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi...Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.展开更多
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
BACKGROUND Currently,traditional Chinese medicine(TCM)formulas are commonly being used as adjunctive therapy for ulcerative colitis in China.Network meta-analysis,a quantitative and comprehensive analytical method,can...BACKGROUND Currently,traditional Chinese medicine(TCM)formulas are commonly being used as adjunctive therapy for ulcerative colitis in China.Network meta-analysis,a quantitative and comprehensive analytical method,can systematically compare the effects of different adjunctive treatment options for ulcerative colitis,providing scientific evidence for clinical decision-making.AIM To evaluate the clinical efficacy and safety of commonly used TCM for the treatment of ulcerative colitis(UC)in clinical practice through a network metaanalysis.METHODS Clinical randomized controlled trials of these TCM formulas used for the adjuvant treatment of UC were searched from the establishment of the databases to July 1,2022.Studies that met the inclusion criteria were screened and evaluated for literature quality and risk of bias according to the Cochrane 5.1 standard.The methodological quality of the studies was assessed using ReviewManager(RevMan)5.4,and a funnel plot was constructed to test for publication bias.ADDIS 1.16 statistical software was used to perform statistical analysis of the treatment measures and derive the network relationship and ranking diagrams of the various intervention measures.RESULTS A total of 64 randomized controlled trials involving 5456 patients with UC were included in this study.The adjuvant treatment of UC using five TCM formulations was able to improve the clinical outcome of the patients.Adjuvant treatment with Baitouweng decoction(BTWT)showed a significant effect[mean difference=36.22,95%confidence interval(CI):7.63 to 65.76].For the reduction of tumor necrosis factor in patients with UC,adjunctive therapy with BTWT(mean difference=−9.55,95%CI:−17.89 to−1.41),Shenlingbaizhu powder[SLBZS;odds ratio(OR)=0.19,95%CI:0.08 to 0.39],and Shaoyao decoction(OR=−23.02,95%CI:−33.64 to−13.14)was effective.Shaoyao decoction was more effective than BTWT(OR=0.12,95%CI:0.03 to 0.39),SLBZS(OR=0.19,95%CI:0.08 to 0.39),and Xi Lei powder(OR=0.34,95%CI:0.13 to 0.81)in reducing tumor necrosis factor and the recurrence rate of UC.CONCLUSION TCM combined with mesalazine is more effective than mesalazine alone in the treatment of UC.展开更多
基金supported by the National Natural Science Foundation of China(U22A20501)the National Key Research and Development Plan of China(2022YFD1500601)+4 种基金the National Science and Technology Fundamental Resources Investigation Program of China(2018FY100304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28090200)the Liaoning Province Applied Basic Research Plan Program,China(2022JH2/101300184)the Shenyang Science and Technology Plan Program,China(21-109-305)the Liaoning Outstanding Innovation Team,China(XLYC2008015)。
文摘Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.
基金the National Natural Science Foundation of China(No.81573150)Military Key Discipline Construction Projects of China(No.HL21JD1206).
文摘Objective:This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder(PTSD).Methods:The Web of Science database(2007-2022)was searched using the search terms“phytochemicals”and“PTSD,”and relevant literature was compiled.Network clustering co-occurrence analysis and qualitative narrative review were conducted.Results:Three hundred and one articles were included in the analysis of published research,which has surged since 2015 with nearly half of all relevant articles coming from North America.The category is dominated by neuroscience and neurology,with two journals,Addictive Behaviors and Drug and Alcohol Dependence,publishing the greatest number of papers on these topics.Most studies focused on psychedelic intervention for PTSD.Three timelines show an“ebb and flow”phenomenon between“substance use/marijuana abuse”and“psychedelic medicine/medicinal cannabis.”Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover,serotonin levels,and brain-derived neurotrophic factor expression.Conclusion:Research on phytochemicals and PTSD is unevenly distributed across countries/regions,disciplines,and journals.Since 2015,the research paradigm shifted to constitute the mainstream of psychedelic research thus far,leading to the exploration of botanical active ingredients and molecular mechanisms.Other studies focus on anti-oxidative stress and anti-inflammation.
文摘BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions.
基金This research was supported by the National Natural Science Foundation of China(31971553,32222051,and 31361123001)the National Science Foundation of the United States of America(DEB-1342754 and DEB-1856318)+1 种基金the Shanghai Rising-Star ProgramP.W.was supported by the research fund of the post-doctor who came to Shenzhen(szbo202306).
文摘Impact statement Habitat loss has been a primary threat to biodiversity.However,species do not function in isolation but often associate with each other and form complex networks.Thus,revealing how the network complexity and stability scale with habitat area will give us more insights into the effects of habitat loss on ecosystems.In this study,we explored the relationships between the island area and the network complexity and stability of soil microbes.We found that the complexity and stability of soil microbial co‐occurrence networks scale positively with island area,indicating that habitat loss will potentially simplify and destabilize soil microbial networks.
基金This study was supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2021SP203,313022004)the National Natural Science Foundation of China(32102821,92051120)+4 种基金the Yongjiang Talent Introduction Programme,the Natural Science Foundation of Ningbo(2022J050)the Zhejiang Major Program of Science and Technology(2021C02069-5-4)the Key Research and Development Program of Zhejiang Province(2019C02054)the Key Research and Development Program of Ningbo(2022Z172)China Agriculture Research System of MOF and MARA.
文摘Microeukaryotes and bacteria are key drivers of primary productivity and nutrient cycling in aquaculture ecosystems.Although their diversity and composition have been widely investigated in aquaculture systems,the co-occurrence bipartite network between microeukaryotes and bacteria remains poorly understood.This study used the bipartite network analysis of high-throughput sequencing datasets to detect the co-occurrence relationships between microeukaryotes and bacteria in water and sediment from coastal aquaculture ponds.Chlorophyta and fungi were dominant phyla in the microeukaryotic–bacterial bipartite networks in water and sediment,respectively.Chlorophyta also had overrepresented links with bacteria in water.Most microeukaryotes and bacteria were classified as generalists,and tended to have symmetric positive and negative links with bacteria in both water and sediment.However,some microeukaryotes with high density of links showed asymmetric links with bacteria in water.Modularity detection in the bipartite network indicated that four microeukaryotes and twelve uncultured bacteria might be potential keystone taxa among the module connections.Moreover,the microeukaryotic–bacterial bipartite network in sediment harbored significantly more nestedness than that in water.The loss of microeukaryotes and generalists will more likely lead to the collapse of positive co-occurrence relationships between microeukaryotes and bacteria in both water and sediment.This study unveils the topology,dominant taxa,keystone species,and robustness in the microeukaryotic–bacterial bipartite networks in coastal aquaculture ecosystems.These species herein can be applied for further management of ecological services,and such knowledge may also be very useful for the regulation of other eutrophic ecosystems.
基金supported by the National Natural Science Foundation of China(32001733)the Earmarked fund for CARS(CARS-47)+3 种基金Guangxi Natural Science Foundation Program(2021GXNSFAA196023)Guangdong Basic and Applied Basic Research Foundation(2021A1515010833)Young Talent Support Project of Guangzhou Association for Science and Technology(QT20220101142)the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(2020TD69)。
文摘Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.
基金Supported by the National Natural Science Foundation of China(Nos.42141003,42176147)the National Key Research and Development Program of China(No.2022YFF0802204)the Natural Science Foundation of Fujian Province of China(No.2021J01025)。
文摘The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological phenomenon,but there is limited cross-domain research in aquatic environments.We conducted a network statistical analysis and visualization of microbial cross-domain co-occurrence patterns based on DNA sampling of a typical subtropical bay during four seasons,using high-throughput sequencing of both 18S rRNA and 16S rRNA genes.First,we found obvious relationships between network stability and network complexity indices.For example,increased cooperation and modularity were found to weaken the stability of cross-domain networks.Secondly,we found that bacterial operational taxonomic units(OTUs)were the most important contributors to network complexity and stability as they occupied more nodes,constituted more keystone OTUs,built more connections,more importantly,ignoring bacteria led to greater variation in network robustness.Gammaproteobacteria,Alphaproteobacteria,Bacteroidetes,and Actinobacteria were the most ecologically important groups.Finally,we found that the environmental drivers most associated with cross-domain networks varied across seasons(in detail,the network in January was primarily constrained by temperature and salinity,the network in April was primarily constrained by depth and temperature,the network in July was mainly affected by depth,temperature,and salinity,depth was the most important factor affecting the network in October)and that environmental influence was stronger on bacteria than on microeukaryotes.
基金Supported by the National Natural Science Foundation of China(No.41867056)the Guizhou Provincial Key Technology R&D Program(Nos.2021470,2023216)。
文摘Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0901401)the Natural Science Foundation of Shandong Province(No.ZR202102280248)+1 种基金the National Natural Science Foundation of China(No.81900630)the Outstanding Youth Project of Yunnan Provincial Department of Science and Technology(No.2019F1019)。
文摘The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms of the taxonomic composition or functional structure,remains relatively unexplored.A total of 22 sampling sites from two water layers(surface water,SW and 50-m layer water,FW)were collected in this area.The physiochemical parameters of waters,Synechococcus,and bacterial density,as well as the bacterioplankton community composition and distribution pattern,were analyzed.The nutrient concentrations of DIN,DIP,and DSi,Chl-a concentration,and the average abundance of heterobacteria in FW were higher than those in SW.However,temperature and the average abundance of Synechococcus and pico-eukaryotes were higher in SW.A total of 3269 OTUs were assigned,and 2123OTUs were commonly shared;moreover,similar alpha diversity patterns were observed in both SW and FW.The bacterioplankton community showed significantly obvious correlation with salinity,DIP,DIN,and Chl a in both SW and FW.Proteobacteria,Cyanobacteria,Bacteroidota,Actinobacteriota,and Firmicutes were the main phyla while Synechococcus_CC9902,Psychrobacter,and Sulfitobacter were the dominant genera in each sampling site.Most correlations that happened between the OTUs in the cooccurrence network were positive and inter-module.Higher edges and graph density were found in SW,indicating that more correlations occurred,and the community was more complex in SW.This study provided novel knowledge on the bacterioplankton community structure and the correlation characteristics in WSG.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB15010101)the National Natural Science Foundation of China(41907039)the China Biodiversity Observation Networks(Sino BON).
文摘The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood.Using Illumina MiSeq DNA sequencing,we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City:the hilltop(300 m a.s.l.),the hillside(150 m a.s.l.),and the foot of the hill(0 m a.s.l.).The results showed that edaphic properties differed significantly with elevation.Bacterial community composition,rather than alpha diversity,strongly differed among the three elevations(Adonis:R2=0.12,P<0.01).Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH,elevation,total nitrogen(TN),and dissolved organic carbon(DOC).The degree scores,betweenness centralities,and composition of keystone species were distinct among the elevations.These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain.Soil pH and elevation together drove the smallscale elevational distribution of soil bacterial communities.This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients.
基金funded by the National Key Research and Development Program of China (2022YFD1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070100)+1 种基金the National Natural Science Foundation of China (41807085)the earmarked fund for China Agriculture Research System (CARS04)。
文摘Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process,but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage(CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage(SCT, tillage to a depth of 15 cm),inversion tillage(IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage(SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil.In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)+2 种基金JST Through the Establishment of University Fellowships Towards the Creation of Science Technology Innovation(JPMJFS2115)the National Natural Science Foundation of China(52078382)the State Key Laboratory of Disaster Reduction in Civil Engineering(CE19-A-01)。
文摘Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.
文摘BACKGROUND Currently,traditional Chinese medicine(TCM)formulas are commonly being used as adjunctive therapy for ulcerative colitis in China.Network meta-analysis,a quantitative and comprehensive analytical method,can systematically compare the effects of different adjunctive treatment options for ulcerative colitis,providing scientific evidence for clinical decision-making.AIM To evaluate the clinical efficacy and safety of commonly used TCM for the treatment of ulcerative colitis(UC)in clinical practice through a network metaanalysis.METHODS Clinical randomized controlled trials of these TCM formulas used for the adjuvant treatment of UC were searched from the establishment of the databases to July 1,2022.Studies that met the inclusion criteria were screened and evaluated for literature quality and risk of bias according to the Cochrane 5.1 standard.The methodological quality of the studies was assessed using ReviewManager(RevMan)5.4,and a funnel plot was constructed to test for publication bias.ADDIS 1.16 statistical software was used to perform statistical analysis of the treatment measures and derive the network relationship and ranking diagrams of the various intervention measures.RESULTS A total of 64 randomized controlled trials involving 5456 patients with UC were included in this study.The adjuvant treatment of UC using five TCM formulations was able to improve the clinical outcome of the patients.Adjuvant treatment with Baitouweng decoction(BTWT)showed a significant effect[mean difference=36.22,95%confidence interval(CI):7.63 to 65.76].For the reduction of tumor necrosis factor in patients with UC,adjunctive therapy with BTWT(mean difference=−9.55,95%CI:−17.89 to−1.41),Shenlingbaizhu powder[SLBZS;odds ratio(OR)=0.19,95%CI:0.08 to 0.39],and Shaoyao decoction(OR=−23.02,95%CI:−33.64 to−13.14)was effective.Shaoyao decoction was more effective than BTWT(OR=0.12,95%CI:0.03 to 0.39),SLBZS(OR=0.19,95%CI:0.08 to 0.39),and Xi Lei powder(OR=0.34,95%CI:0.13 to 0.81)in reducing tumor necrosis factor and the recurrence rate of UC.CONCLUSION TCM combined with mesalazine is more effective than mesalazine alone in the treatment of UC.