期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO_3 catalysts for VOCs combustion 被引量:11
1
作者 Lei Deng Chao Huang +4 位作者 Jiawei Kan Bing Li Yingwen Chen Shemin Zhu Shubao Shen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第3期265-272,共8页
NiMnO3 perovskite catalysts supported on cordierite modified by CexZr(1-x)O2 coatings were prepared using impregnation and sol-gel methods for catalytic combustion of single/double component VOCs at different concen... NiMnO3 perovskite catalysts supported on cordierite modified by CexZr(1-x)O2 coatings were prepared using impregnation and sol-gel methods for catalytic combustion of single/double component VOCs at different concentrations and GHSV of 15,000 h^(-1), which were characterized by BET, XRD, SEM, FT-IR, H2-TPR and O2-TPD. After coating modification, the specific surface area of catalysts is improved obviously.Among the catalysts, the Ce(0.75)Zr(0.25)O2 coating modified NiMnO3 catalyst exhibits the best catalytic activity for VOCs combustion with 95.6% conversion at 275 ℃ and has stable activity when catalyst is embalmed at 800 ℃. In addition, the catalyst also presents the excellent water-resistant and conversion stability over time-on-stream condition. The reason is that Ce(0.75)Zr(0.25)O2 coating can promote more lattice distortion and defects and smaller crystal size, which improve oxygen transfer capability and dispersion of active component. 展开更多
关键词 Catalytic combustion VOCs coating modification NiMnO3 catalyst lattice distortion and defects Oxygen transfer capability
原文传递
Ceramics Surface Modification by Excimer Laser Metal Coating
2
作者 Weidou ZHU and Haicheng GU(Dept. of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第6期463-465,共3页
Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy densi... Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy density was varied from 0.21 to 0.81 J / cm2 to optimize bending strength. For ZrO2 ceramic, it was found that the strength increases from 530 to 753 MPa at 0.51 J / cm2 irradiation. For Al2O3 and (Ce-TZP)+ Al2O3 the fracture strength also increases in varying degree. The causes of strength increment were discussed. 展开更多
关键词 Ceramics Surface modification by Excimer Laser Metal coating RES
下载PDF
Acid/Base Treatment of Monolithic Activated Carbon for Coating Silver with Tunable Morphology 被引量:1
3
作者 程辞 WANG Fei +3 位作者 赵斌元 宁月生 LAI Yijian WANG Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期760-765,共6页
Silver coatings on the exterior surface of monolithic activated carbon(MAC) with different morphology were prepared by directly immersing MAC into [Ag(NH3)2]NO3 solution. Acid and base treatments were employed to ... Silver coatings on the exterior surface of monolithic activated carbon(MAC) with different morphology were prepared by directly immersing MAC into [Ag(NH3)2]NO3 solution. Acid and base treatments were employed to modify the surface oxygenic groups of MAC, respectively. The MACs' Brunauer-EmmettTeller(BET) surface area, surface groups, and silver coating morphology were characterized by N2 adsorption, elemental analysis(EA), X-ray photoelectron spectroscopy(XPS), and scanning electron microscopy(SEM), respectively. The coating morphology was found to be closely related to the surface area and surface functional groups of MAC. For a raw MAC which contained a variety of oxygenic groups, HNO3 treatment enhanced the relative amount of highly oxidized groups such as carboxyl and carbonates, which disfavored the deposition of silver particles. By contrast, Na OH treatment significantly improved the amount of carbonyl groups, which in turn improved the deposition amount of silver. Importantly, lamella silver was produced on raw MAC while Na OH treatment resulted in granular particles because of the capping effect of carbonyl groups. At appropriate [Ag(NH3)2]NO3 concentrations, silver nanoparticles smaller than 100 nm were homogeneously dispersed on Na OH-treated MAC. The successful tuning of the size and morphology of silver coatings on MAC is promising for novel applications in air purification and for antibacterial or aesthetic purposes. 展开更多
关键词 monolithic activated carbon silver coating morphology functional groups surface modification
下载PDF
Research progress on silicon carbide and its modified coatings in C/SiC composites
4
作者 Wu-bin QI Jia-qi WU +7 位作者 Zhuan LI Peng XIAO Jun-jie DUAN Yang-jie LI Liang PANG Zong-long GAO Jia-min ZHU Yang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第12期3822-3845,共24页
Carbon fiber reinforced silicon carbide ceramic composite(C/SiC)has become a key structural material due to its excellent high temperature resistance,corrosion resistance and oxidation resistance.However,C/SiC composi... Carbon fiber reinforced silicon carbide ceramic composite(C/SiC)has become a key structural material due to its excellent high temperature resistance,corrosion resistance and oxidation resistance.However,C/SiC composites are prone to oxidation under long-term high temperature loading conditions.In this work,the research progress of SiC coating and its modified coating on the surface of C/SiC composite is reviewed.The optimization of these coatings mainly involves two aspects:structure and composition.The focus of structural optimization is to improve the interphase structure by such as SiC nanowires,thereby improving the interfacial bonding strength between the coatings and between the coatings and the substrate.The focus of composition optimization is to improve the performance of the coatings under high temperature loads by rare earth silicates,etc.The modification strategies of various modified coatings are emphatically introduced,which is helpful to guide the preparation of high-performance C/SiC coating materials in the future. 展开更多
关键词 C/SiC composite coating coating modification oxidation strength
下载PDF
Comparative Study on Optical Properties and Scratch Resistance of Nanocomposite Coatings Incorporated with Flame Spray Pyrolyzed Silica Modified via in-situ Route and ex-situ Route 被引量:4
5
作者 Yun Wang Ling Zhang +1 位作者 Yanjie Hu Chunzhong Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期251-258,共8页
A new type of transparent scratch resistant coatings including in-situ modified SiO2 (g-SiO2) in flame spray pyrolysis (FSP) process was prepared. The maximum content of g-SiO2 in the coating was 15 wt%, which is ... A new type of transparent scratch resistant coatings including in-situ modified SiO2 (g-SiO2) in flame spray pyrolysis (FSP) process was prepared. The maximum content of g-SiO2 in the coating was 15 wt%, which is higher than that of SiO2 modified by traditional wet chemical route (I-SiO2, only 10 wt%). The results of transmission electron microscopy have demonstrated that in-situ surface modified g-SiO2 particles dispersed well with smaller agglomerates in the final coating, which was much better than the particles modified via wet chemical route. Visible light transmittance and haze tests were introduced to characterize the optical quality of the films. All coatings were highly transparent with the visible light transmittance of above 80%, especially for coatings containing g-SiO2, which exhibited slightly higher visible light transmittance than l-SiO2 embedded one. The haze value of coatings incorporated with 15 wt% g-SiO2 was 1.85%, even lower than the coating with 5 wt% I-SiO2 (haze value of 2.09%), indicating much better clarity of g-SiO2. The excellent optical property of g-SiO2 filled coatings was attributed to the good dispersion and distribution of particles. Nano-indention and nano-scratch tests were con- ducted to investigate the scratch resistance of coatings on nano-scale. The surface hardness of the coatings rose by 18% and 14%, and the average friction coefficient decreased by 15% and 11%, respectively, compared to the neat coat due to the addition of 10 wt% g-SiO2 and I-SiO2. The pencil hardness of the coating with 15 wt% g-SiO2 increased from 2B for the neat coating to 2H. However, the pencil hardness of coating with 10 wt% I-SiO2 was only H. The results showed that the g-SiO2 embedded coatings exhibited higher scratch resistance and better optical properties. 展开更多
关键词 ln-situ modification Silica coating Scratch resistance Optical property
原文传递
Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium-ion batteries
6
作者 Kai Chen Wenqin Cai +11 位作者 Zhihua Hu Qingke Huang Ao Wang Zeng Zeng Jiahao Song Yan Sun Qingquan Kong Wei Feng Ting Chen Zhenguo Wu Yang Song Xiaodong Guo 《Electron》 2024年第2期1-28,共28页
Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent elec-trochemical properties and low price.However,microcracks,lithium–nickel hyb... Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent elec-trochemical properties and low price.However,microcracks,lithium–nickel hybridization,and irreversible phase transitions during cycling limit their commercial applications.These issues should be resolved by modifications.In recent years,it has been favored by researchers to solve a large number of problems by combining multiple modification strate-gies.Therefore,this paper reviews recent developments in various modification techniques for nickel-rich cathode materials that have improved their electrochemical characteristics.The summary of multiple modifications of nickel-rich materials will play a guiding role in future development. 展开更多
关键词 coating modification dual modification element doping Ni-rich cathodes
原文传递
Self-ball milling strategy to construct high-entropy oxide coated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) with enhanced electrochemical performance 被引量:2
7
作者 Kai YUAN Tianzhe TU +5 位作者 Chao SHEN Lin ZHOU Jixuan LIU Jing LI Keyu XIE Guojun ZHANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第6期882-892,共11页
High-entropy oxides(HEOs)are a new class of emerging materials with fascinating properties(such as structural stability,tensile strength,and corrosion resistance).High-entropy oxide coated Ni-rich cathode materials ha... High-entropy oxides(HEOs)are a new class of emerging materials with fascinating properties(such as structural stability,tensile strength,and corrosion resistance).High-entropy oxide coated Ni-rich cathode materials have great potential to improve the electrochemical performance.Here,we present a facile self-ball milling method to obtain(La_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2)Gd_(0.2))_(2)Zr_(2)O_(7)(HEO)coated LiNi_(0.8)Co_(_(0.1))Mn_(_(0.1))O_(2)(NCM811).The HEO coating endows NCM811 with a stable surface,reduces the contact with the external environment(air and electrolyte),and inhibits side reactions between cathode and electrolyte.These favorable effects,especially when the coating amount is 5 wt%,result in a significant reduction of the battery polarization and an increase in the capacity retention from 57.3%(NCM811)to 74.2%(5HEO-NCM811)after 300 cycles at 1 C(1 C=200 mA·h·g^(−1)).Moreover,the morphology and spectroscopy analysis after the cycles confirmed the inhibitory effect of the HEO coating on electrolyte decomposition,which is important for the cycle life.Surprisingly,HEO coating reduces the viscosity of slurry by 37%–38%and significantly improves the flowability of the slurry with high solid content.This strategy confirms the feasibility of HEO-modified Ni-rich cathode materials and provides a new idea for the design of high-performance cathode materials for Li-ion batteries. 展开更多
关键词 high-entropy oxides(HEOs) Li-ion battery(LIB) Ni-rich cathode coating modification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部