Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of ...Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium.展开更多
In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated...In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated in detail using Gleeble-1500 thermal mechanical simulator, universal testing machine and optical microscope (OM). The compression deformation experimental data of commercially pure titanium (CP-Ti) were mapped to be a T vs lg diagram in which data fall into three distinct regions, i.e., three-stage work hardening, two-stage work hardening and flow softening, which can be separated by border lines at 17.5 and 15.4 for lg Z, where Z represents the Zener-Hollomon parameter. The deformation twin is found to have higher Z-value corresponding to the work hardening region. The differences in microstructures and mechanical properties for two kinds of billets indicate that forged billet consists of deformation twins and some twin intersections, and many twins cross the grain boundaries. However, nearly no twins can be seen in the microstructure of billet formed by rolling under optical microscope (OM), but there are equiaxed and platelike grains. Tensile tests and Vickers hardness test indicate that yield strength, tensile strength and microhardness of the samples after forging are higher than those after rolling.展开更多
The effects of cold rolling and annealing on the microstructure and textural evolution of a commercially pure titanium(CP-Ti) sheet were investigated. Electron backscatter diffractometry demonstrates that the deform...The effects of cold rolling and annealing on the microstructure and textural evolution of a commercially pure titanium(CP-Ti) sheet were investigated. Electron backscatter diffractometry demonstrates that the deformation during rolling is accommodated by twinning and slip. Additionally, twinning is the dominant deformation mechanism when the cold rolling reduction is less than 40%. During rolling, {11ˉ22}11ˉ2ˉ3contraction twinning(CT) and {10ˉ12}10ˉ11 extension twinning(ET) are activated. And, the intensity of the(0002) pole along the ND gradually increases with increasing deformation. During annealing, the fraction of low angle grain boundaries(LAGBs) and the intensity of the(0002) pole along the ND gradually decrease slightly with increasing annealing time, while twinning lamellae disappear rapidly. When the annealing time reaches 60 min, 20% cold-rolled sheet recrystallizes almost completely.展开更多
Equal channel angular pressing(ECAP)is one of the most effective processes to produce ultra-fine grain(UFG)and nanocrystalline(NC)materials.Because the commercially pure titanium exhibits excellent biocompatibility pr...Equal channel angular pressing(ECAP)is one of the most effective processes to produce ultra-fine grain(UFG)and nanocrystalline(NC)materials.Because the commercially pure titanium exhibits excellent biocompatibility properties,it has a significant potential to be utilized as an implant material.The low static and dynamic strengths of the pure titanium are one of the weaknesses of this material.This defect can be removed by applying the ECAP process on the pure titanium.In this work,the commercially pure titanium Grade2(CP-Ti of Grade2)was pressed at room temperature by the ECAP process via a channel angle of135°for3passes.The microstructural analysis and mechanical tests such as tensile test,hardness test,three-point bending test and Charpy impact test were all carried out on the ECAPed CP-Ti through3passes.The microstructural evolution reveals that by applying the ECAP process,coarse grain(CG)structure develops to UFG/NC structure.Moreover,the results of the mechanical tests show that the process significantly increases the yield and ultimate tensile strengths,bending strength,hardness and fracture toughness of the commercially pure titanium so that it can be used as a replacement for metallic alloys used as biomaterials.展开更多
In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α t...In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α transformation kinetics of the grade-2 CP-Ti during continuous cooling was measured and its hot compression behavior was investigated using Gleeble-1500 thermal mechanical simulator. Dynamic CCT diagram confirms that cooling rate has an obvious effect on the start and finishing transformation and microstructures at room temperature. The critical cooling rate for γ-phase transforms to a phase is about 15℃/s. When the cooling rate is higher than 15 ℃/s, some β phases with fine granular shape remain residually into plate-like structure. The plate-like a phase forms at cooling rate lower than 2 ℃/s, serrate a phase forms at medium cooling rates, about 5-15℃/s. The flow stress behavior of grade-2 CP-Ti was investigated in a temperature range of 700-900℃ and strain rate of 3.6-40 mm/min. The results show that dynamic recrystallization, dynamic recovery and work-hardening obviously occur during hot deformation. Constitutive equation of grade-2 CP-Ti was established by analyzing the relationship of the deformation temperature, strain rate, deformation degree and deformation resistance.展开更多
A review on severe plastic deformation(SPD) technique of equal channel angular pressing(ECAP) process of commercially pure titanium(CP-Ti) alloys was presented with a major emphasize on the influence of ECAP par...A review on severe plastic deformation(SPD) technique of equal channel angular pressing(ECAP) process of commercially pure titanium(CP-Ti) alloys was presented with a major emphasize on the influence of ECAP parameters that include channel and curvature angles, processing route, temperature of operation, pressing speed, internal heating, number of pass through the die and back pressure. Various ECAP characteristics such as microstructure, strain inhomogeneity and mechanical properties are considered to achieve the maximum homogeneity, equilibrium grain refinement and mechanical improvement of CP-Ti. Investigations show that a pressing speed of 1-3 mm/s at 450 °C with route BC along with channel and curvature angles of 90° and 20° respectively with backpressure can lead to the most homogeneous ultrafine microstructure.展开更多
The strength of traditional commercially pure titanium(CP-Ti) alloys often fails to meet the demand of structural materials. In order to enhance their mechanical properties, the cold-rolled CP-Ti alloys were annealed ...The strength of traditional commercially pure titanium(CP-Ti) alloys often fails to meet the demand of structural materials. In order to enhance their mechanical properties, the cold-rolled CP-Ti alloys were annealed at different temperatures, and the recrystallization behavior and texture evolution were investigated. It was found that the bimodal microstructure(equiaxed and elongated grains) was formed after partial recrystallization, and the corresponding sample exhibited an excellent combination of ultimate tensile strength(702 MPa) and total elongation(36.4%). The recrystallization nucleation of CP-Ti sheets occurred preferentially in the high strain and the high-angle grain boundaries(HAGBs) regions. Meanwhile, the internal misorientations of the deformed heterogeneous grains increased and transformed into HAGBs, which further promoted the recrystallization nucleation. The main recrystallization texture was basal TD-split texture transformed from cold-rolled basal RD-split texture, and the oriented nucleation played a dominated role during recrystallization.展开更多
The specimens cut from the cold-rolled pure titanium sheet at 0°,45°and 90°to the rolling direction were treated by high density electropulsing(maximum current density J=(7.22-7.96)×10^(3)A/mm^(2),...The specimens cut from the cold-rolled pure titanium sheet at 0°,45°and 90°to the rolling direction were treated by high density electropulsing(maximum current density J=(7.22-7.96)×10^(3)A/mm^(2),pulse period t_(p)=110μs).The mechanical properties and microstructures of the cold-rolled,electropulsed and conventional annealed commercially pure titanium sheet were examined by using uniaxial tension test machine and optical microscope(OM),respectively.The results show that the deformation behavior of the electropulsed pure titanium sheet is significantly different from that of conventional annealed pure titanium sheet.The difference of the mechanical properties between the 0°,45°and 90°direction specimens is almost diminished.It is mainly due to the increase in dislocation mobility and formation of lamellar microstructure after the electropulsing.展开更多
Commercially pure titanium (CP Ti) sheets show typical planar anisotropy due to the inherently crys- tallographic texture and manufacturing process. To char- acterize the planar anisotropic behaviors of CP Ti sheets...Commercially pure titanium (CP Ti) sheets show typical planar anisotropy due to the inherently crys- tallographic texture and manufacturing process. To char- acterize the planar anisotropic behaviors of CP Ti sheets in the forming process, uniaxial tensile tests of TA0 sheets were performed along rolling, transverse, and diagonal directions at room temperature; corresponding stress-strain curves and Lankford coefficients were obtained. Based on Hi11'48 and Barlat'89 yield functions, the planar anisotropy of TA0 sheets was investigated. In order to verify the accuracy of two models, we compared the experimental and predicted values of yield stress and Lankford coeffi- cients. It reveals that Barlat'89 criterion with M = 10 is good agreement with experimental data, and the obtained function can be used in simulation of forming process.展开更多
Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, ...Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, and neural network models were used to predict the ultimate tensile strength, yield strength, elongation, reduction of area, Vickers hardness and Rockwell B hardness. The results show that both oxygen and nitrogen have the most significant effects on the strength while hydrogen has the least effect over the range investigated. Predictions of the mechanical properties are shown and agree well with those obtained using the 'oxygen equivalent' (OE) equations.展开更多
Summary: In order to study the character of periodontal ligament cells (PDLCs) attaching on commercially pure titanium (cpTi) by morphology and metrology on the early stage (24 h), 1×105/ml PDLCs in 2 ml culture...Summary: In order to study the character of periodontal ligament cells (PDLCs) attaching on commercially pure titanium (cpTi) by morphology and metrology on the early stage (24 h), 1×105/ml PDLCs in 2 ml culture medium were seeded on cpTi discs fixed in 24-well culture plates. Morphology of cell attachment was observed by contrast phase microscope, scanning electron microscope (SEM) and fluroscence microscopy. Cell adhesion was analyzed by MTT at 0.5, 1, 2, 4 h respectively. PDLCs could attach and spread on cpTi discs. SEM showed that PDLCs had pseudopod-like protuberance. PDLCs showed different attaching phases and reached saturation in cell number at 2 h. It was concluded that PDLCs had good biocompatibility with cpTi, and showed a regular and dynamic pattern in the process of attaching to cpTi.展开更多
To explain the intrinsic mechanism of the yield plateau phenomenon in commercially pure titanium,the tensile behaviors of commercially pure titanium specimens after 91.6%cryorolling and subsequent annealing at 280℃,...To explain the intrinsic mechanism of the yield plateau phenomenon in commercially pure titanium,the tensile behaviors of commercially pure titanium specimens after 91.6%cryorolling and subsequent annealing at 280℃,335℃,450℃and 600℃have been studied.The results show that the yield plateau phenomenon is a result of dislocation behaviors controlled by grain size and thus only exists within a given range of mean grain size.αgrain boundaries are the main dislocation multiplication sources of commercially pure titanium.Fine-grained microstructure could offer numerous dislocation multiplication locations during deformation.Once the applied stress is above the yielding strength,dislocations multiply rapidly and the mobile dislocation density is high.To retrieve the imposed strain rate,the mean dislocation velocity is bound to be low.Therefore,it takes time for them to interact with each other.As a result,the movement of dislocations is hardly blocked and the deformation could continue at a nearly constant applied stress.Consequently,the so-called yield plateau behavior presents in the tensile curves.The disappearance of yield plateau phenomenon in coarse-grained and ultrafi ne-grained microstructures is attributed to the quick realization of the mutual interactions among dislocations at the initial stage of tensile test.展开更多
The microstructure, physical and mechanical, and chemical properties of micro-arc calcium phosphate (CAP) coatings deposited under different process voltages in the range of 150-400 V on the commercially pure titani...The microstructure, physical and mechanical, and chemical properties of micro-arc calcium phosphate (CAP) coatings deposited under different process voltages in the range of 150-400 V on the commercially pure titanium (Ti) and Ti-40%Nb (Ti-40Nb) (mass fraction) alloy were investigated by the SEM, TEM, XRD and EDX methods. The coating thickness, roughness, and sizes of structural elements were measured and showed similar linear character depending on the process voltage for the coatings on both substrates. SEM results showed the porous morphology with spherical shape structural elements and rough surface relief of the coatings. XRD and TEM studies exhibited the amorphous structure of the CaP coating. With increasing the process voltage to 300-400 V, the crystalline phases, such as CaHPO4 and β-Ca2P207, were formed onto the coatings. The annealing leads to the formation of complex poly-phase structure with crystalline phases: CaTi4(PO4)6, β-Ca2P2O7, TiP2O7, TiNb(PO4)3, TiO2, NbO2, and Nb2O5. The applied voltage and process duration in the ranges of 200-250 V and 5-10 min, respectively, revealed the coating formed on Ti and Ti-40Nb with optimal properties: thickness of 40-70μm, porosity of 20%-25%, roughness (Ra) of 2.5-5.0 μm, adhesion strength of 15-30 MPa, and Ca/P mole ratio of 0.5-0.7.展开更多
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under diffe...The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.展开更多
The evolution of hardness homogeneity in commercially pure titanium processed by equal channel angular pressing (ECAP) for up to 4 passes following route C at room temperature using a die of 90° was investigate...The evolution of hardness homogeneity in commercially pure titanium processed by equal channel angular pressing (ECAP) for up to 4 passes following route C at room temperature using a die of 90° was investigated by recording the microhardness on the cross-sectional and longitudinal planes of each billet. The results show that the hardness increases significantly after the first pass although there is a region of lower hardness on the cross-section running in a band near the bottom surface of the billet, and then increases by very small amounts in subsequent passes. With increasing numbers of passes, the lower hardness region near the bottom surface disappears and the microhardness values are distributed homogeneously throughout the cross- sectional and longitudinal planes after 4 passes of ECAP. The microhardness values in the central regions of the billet are slightly lower than those of the top and bottom surfaces. The results show that good homogeneity may be achieved throughout the billets after 4 passes of ECAP following route C.展开更多
The dissimilar joining of biodegradable magnesium alloy to pure commercial titanium by rotational friction welding with rotational speeds of 1100,1200 and 1300 r/min for the production of bio-screw was investigated.Th...The dissimilar joining of biodegradable magnesium alloy to pure commercial titanium by rotational friction welding with rotational speeds of 1100,1200 and 1300 r/min for the production of bio-screw was investigated.The metallographic analysis revealed that a good joining was obtained at the Ti/Mg alloy joint.On the magnesium alloy side,various regions such as the weld center zone(WCZ),dynamic recrystallization zone(DRX),thermo-mechanically affected zone(TMAZ)and partially deformed zone(PDZ)were observed.The highest tensile and shear strengths were 173 and 103.2 MPa,respectively at a rotational speed of 1300 r/min.The Ti/Mg alloy dissimilar friction welded joint failed at the vicinity of the intermetallic zone containing Ti3Al phase.The hardness values from the base metal magnesium alloy to the joining point increased mainly due to grain refinement(8.57μm in diameter)and the presence of titanium particles,while the hardness values were constant on the titanium side.It was also found that the corrosion rate of the Ti/Mg alloy joint was higher compared with that of the Ti and Mg alloy from the immersion studies.Additionally,the sample with a rotational speed of 1300 r/min showed better biocompatibility and a cell viability of 98.12%due to better corrosion resistance.展开更多
The surface nanostructures of commercial pure titanium was realized by the modified shot peening equipment commonly used in industry through the special treatment process. The results show that high-energy-shot-peenin...The surface nanostructures of commercial pure titanium was realized by the modified shot peening equipment commonly used in industry through the special treatment process. The results show that high-energy-shot-peening(HESP) commonly used to prepare nanostructured surface layers can be achieved by the increase of pill size, pill speed, and treatment time in the commercial shot peening equipment. XRD, SEM and TEM were used to characterize the surface layer microstructure of treated specimens. The analytic results show that the main deformation mode of commercial pure Ti is twinning. At the beginning of deformation, the dislocations are formed and twins occur within or on plane, then twins in intersection plane appear, and at last the twin characteristics disappear in the surface layer after longer treatment time. The deformation layer depth increases with treatment time in a certain period when the pill size and speed are unchanged. And in the severe plastic deformation (SPD) layer in which the twins are not identified easily by using SEM, the nanocrystalline microstructures are found under TEM. The finest grain size in the surface layer is about 40 nm, and the depth of nanostructured layers is over 60 μm. The microhardness of the nanostructured surface layers is enhanced significantly after shot peening compared with that of the initial simple.展开更多
The effects of electropulsing-assisted ultrasonic surface rolling process on surface mechanical properties andmicrostructure evolution of commercial pure titanium were investigated. It was found that the surface mecha...The effects of electropulsing-assisted ultrasonic surface rolling process on surface mechanical properties andmicrostructure evolution of commercial pure titanium were investigated. It was found that the surface mechanical prop-erties were significantly enhanced compared to traditional ultrasonic surface rolling process (USRP), leading to smallersurface roughness and smoother morphology with fewer cracks and defects. Moreover, surface strengthened layer wasremarkably enhanced with deeper severe plastic deformation layer and higher surface hardness. Remarkable enhancementsof surface mechanical properties may be related to the gradient refined microstructure, the enhanced severe plasticdeformation layer and the accelerated formation of sub-boundaries and twins induced by coupling effects of USRP andelectropulsing. The primary intrinsic reasons for these improvements may be attributed to the thermal and athermal effectscaused by electropulsing treatment, which would accelerate dislocation mobility and atom diffusion.展开更多
基金Project(2014CB644003)supported by the National Basic Research Program of ChinaProject(51321003)supported by the National Natural Science Foundation of ChinaProject(B06025)supported by"111"Project of China
文摘Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium.
文摘In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated in detail using Gleeble-1500 thermal mechanical simulator, universal testing machine and optical microscope (OM). The compression deformation experimental data of commercially pure titanium (CP-Ti) were mapped to be a T vs lg diagram in which data fall into three distinct regions, i.e., three-stage work hardening, two-stage work hardening and flow softening, which can be separated by border lines at 17.5 and 15.4 for lg Z, where Z represents the Zener-Hollomon parameter. The deformation twin is found to have higher Z-value corresponding to the work hardening region. The differences in microstructures and mechanical properties for two kinds of billets indicate that forged billet consists of deformation twins and some twin intersections, and many twins cross the grain boundaries. However, nearly no twins can be seen in the microstructure of billet formed by rolling under optical microscope (OM), but there are equiaxed and platelike grains. Tensile tests and Vickers hardness test indicate that yield strength, tensile strength and microhardness of the samples after forging are higher than those after rolling.
基金Projects(51505046,51421001)supported by the National Natural Science Foundation of China
文摘The effects of cold rolling and annealing on the microstructure and textural evolution of a commercially pure titanium(CP-Ti) sheet were investigated. Electron backscatter diffractometry demonstrates that the deformation during rolling is accommodated by twinning and slip. Additionally, twinning is the dominant deformation mechanism when the cold rolling reduction is less than 40%. During rolling, {11ˉ22}11ˉ2ˉ3contraction twinning(CT) and {10ˉ12}10ˉ11 extension twinning(ET) are activated. And, the intensity of the(0002) pole along the ND gradually increases with increasing deformation. During annealing, the fraction of low angle grain boundaries(LAGBs) and the intensity of the(0002) pole along the ND gradually decrease slightly with increasing annealing time, while twinning lamellae disappear rapidly. When the annealing time reaches 60 min, 20% cold-rolled sheet recrystallizes almost completely.
文摘Equal channel angular pressing(ECAP)is one of the most effective processes to produce ultra-fine grain(UFG)and nanocrystalline(NC)materials.Because the commercially pure titanium exhibits excellent biocompatibility properties,it has a significant potential to be utilized as an implant material.The low static and dynamic strengths of the pure titanium are one of the weaknesses of this material.This defect can be removed by applying the ECAP process on the pure titanium.In this work,the commercially pure titanium Grade2(CP-Ti of Grade2)was pressed at room temperature by the ECAP process via a channel angle of135°for3passes.The microstructural analysis and mechanical tests such as tensile test,hardness test,three-point bending test and Charpy impact test were all carried out on the ECAPed CP-Ti through3passes.The microstructural evolution reveals that by applying the ECAP process,coarse grain(CG)structure develops to UFG/NC structure.Moreover,the results of the mechanical tests show that the process significantly increases the yield and ultimate tensile strengths,bending strength,hardness and fracture toughness of the commercially pure titanium so that it can be used as a replacement for metallic alloys used as biomaterials.
基金Project(J51504) supported by Shanghai Leading Academic Discipline Project,China
文摘In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α transformation kinetics of the grade-2 CP-Ti during continuous cooling was measured and its hot compression behavior was investigated using Gleeble-1500 thermal mechanical simulator. Dynamic CCT diagram confirms that cooling rate has an obvious effect on the start and finishing transformation and microstructures at room temperature. The critical cooling rate for γ-phase transforms to a phase is about 15℃/s. When the cooling rate is higher than 15 ℃/s, some β phases with fine granular shape remain residually into plate-like structure. The plate-like a phase forms at cooling rate lower than 2 ℃/s, serrate a phase forms at medium cooling rates, about 5-15℃/s. The flow stress behavior of grade-2 CP-Ti was investigated in a temperature range of 700-900℃ and strain rate of 3.6-40 mm/min. The results show that dynamic recrystallization, dynamic recovery and work-hardening obviously occur during hot deformation. Constitutive equation of grade-2 CP-Ti was established by analyzing the relationship of the deformation temperature, strain rate, deformation degree and deformation resistance.
基金Project(DMR-0968825)support by National Science Foundation Through Grant
文摘A review on severe plastic deformation(SPD) technique of equal channel angular pressing(ECAP) process of commercially pure titanium(CP-Ti) alloys was presented with a major emphasize on the influence of ECAP parameters that include channel and curvature angles, processing route, temperature of operation, pressing speed, internal heating, number of pass through the die and back pressure. Various ECAP characteristics such as microstructure, strain inhomogeneity and mechanical properties are considered to achieve the maximum homogeneity, equilibrium grain refinement and mechanical improvement of CP-Ti. Investigations show that a pressing speed of 1-3 mm/s at 450 °C with route BC along with channel and curvature angles of 90° and 20° respectively with backpressure can lead to the most homogeneous ultrafine microstructure.
基金financially supported by the National Natural Science Foundation of China (No.52104372)the Fundamental Research Funds for the Central Universities,China (No.N2107001)the China Postdoctoral Science Foundation (No.2019M651129)。
文摘The strength of traditional commercially pure titanium(CP-Ti) alloys often fails to meet the demand of structural materials. In order to enhance their mechanical properties, the cold-rolled CP-Ti alloys were annealed at different temperatures, and the recrystallization behavior and texture evolution were investigated. It was found that the bimodal microstructure(equiaxed and elongated grains) was formed after partial recrystallization, and the corresponding sample exhibited an excellent combination of ultimate tensile strength(702 MPa) and total elongation(36.4%). The recrystallization nucleation of CP-Ti sheets occurred preferentially in the high strain and the high-angle grain boundaries(HAGBs) regions. Meanwhile, the internal misorientations of the deformed heterogeneous grains increased and transformed into HAGBs, which further promoted the recrystallization nucleation. The main recrystallization texture was basal TD-split texture transformed from cold-rolled basal RD-split texture, and the oriented nucleation played a dominated role during recrystallization.
文摘The specimens cut from the cold-rolled pure titanium sheet at 0°,45°and 90°to the rolling direction were treated by high density electropulsing(maximum current density J=(7.22-7.96)×10^(3)A/mm^(2),pulse period t_(p)=110μs).The mechanical properties and microstructures of the cold-rolled,electropulsed and conventional annealed commercially pure titanium sheet were examined by using uniaxial tension test machine and optical microscope(OM),respectively.The results show that the deformation behavior of the electropulsed pure titanium sheet is significantly different from that of conventional annealed pure titanium sheet.The difference of the mechanical properties between the 0°,45°and 90°direction specimens is almost diminished.It is mainly due to the increase in dislocation mobility and formation of lamellar microstructure after the electropulsing.
基金financially supported by the National Natural Science Foundation of China (No. 51075031,50831008)
文摘Commercially pure titanium (CP Ti) sheets show typical planar anisotropy due to the inherently crys- tallographic texture and manufacturing process. To char- acterize the planar anisotropic behaviors of CP Ti sheets in the forming process, uniaxial tensile tests of TA0 sheets were performed along rolling, transverse, and diagonal directions at room temperature; corresponding stress-strain curves and Lankford coefficients were obtained. Based on Hi11'48 and Barlat'89 yield functions, the planar anisotropy of TA0 sheets was investigated. In order to verify the accuracy of two models, we compared the experimental and predicted values of yield stress and Lankford coeffi- cients. It reveals that Barlat'89 criterion with M = 10 is good agreement with experimental data, and the obtained function can be used in simulation of forming process.
基金This work is supported by the Scientific Research Foun-dation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, and neural network models were used to predict the ultimate tensile strength, yield strength, elongation, reduction of area, Vickers hardness and Rockwell B hardness. The results show that both oxygen and nitrogen have the most significant effects on the strength while hydrogen has the least effect over the range investigated. Predictions of the mechanical properties are shown and agree well with those obtained using the 'oxygen equivalent' (OE) equations.
文摘Summary: In order to study the character of periodontal ligament cells (PDLCs) attaching on commercially pure titanium (cpTi) by morphology and metrology on the early stage (24 h), 1×105/ml PDLCs in 2 ml culture medium were seeded on cpTi discs fixed in 24-well culture plates. Morphology of cell attachment was observed by contrast phase microscope, scanning electron microscope (SEM) and fluroscence microscopy. Cell adhesion was analyzed by MTT at 0.5, 1, 2, 4 h respectively. PDLCs could attach and spread on cpTi discs. SEM showed that PDLCs had pseudopod-like protuberance. PDLCs showed different attaching phases and reached saturation in cell number at 2 h. It was concluded that PDLCs had good biocompatibility with cpTi, and showed a regular and dynamic pattern in the process of attaching to cpTi.
基金financial support from the National Natural Science Foundation of China(Grant No.51801132)the China scholarship council(CSC NO.201906935013)for X.H.Shi.Specially。
文摘To explain the intrinsic mechanism of the yield plateau phenomenon in commercially pure titanium,the tensile behaviors of commercially pure titanium specimens after 91.6%cryorolling and subsequent annealing at 280℃,335℃,450℃and 600℃have been studied.The results show that the yield plateau phenomenon is a result of dislocation behaviors controlled by grain size and thus only exists within a given range of mean grain size.αgrain boundaries are the main dislocation multiplication sources of commercially pure titanium.Fine-grained microstructure could offer numerous dislocation multiplication locations during deformation.Once the applied stress is above the yielding strength,dislocations multiply rapidly and the mobile dislocation density is high.To retrieve the imposed strain rate,the mean dislocation velocity is bound to be low.Therefore,it takes time for them to interact with each other.As a result,the movement of dislocations is hardly blocked and the deformation could continue at a nearly constant applied stress.Consequently,the so-called yield plateau behavior presents in the tensile curves.The disappearance of yield plateau phenomenon in coarse-grained and ultrafi ne-grained microstructures is attributed to the quick realization of the mutual interactions among dislocations at the initial stage of tensile test.
基金Project(III.23.2.5)supported by the Fundamental Research Program of the Siberian Branch of Russian Academy of SciencesProject(15-03-07659)supported by the Russian Foundation for Basic Research+1 种基金Project(CR16-22)supported by the China and Russia on the Implementation of Inter-governmental ScientificTechnological Cooperation Projects of the Notice(NSC foreign word[2012]No.269)
文摘The microstructure, physical and mechanical, and chemical properties of micro-arc calcium phosphate (CAP) coatings deposited under different process voltages in the range of 150-400 V on the commercially pure titanium (Ti) and Ti-40%Nb (Ti-40Nb) (mass fraction) alloy were investigated by the SEM, TEM, XRD and EDX methods. The coating thickness, roughness, and sizes of structural elements were measured and showed similar linear character depending on the process voltage for the coatings on both substrates. SEM results showed the porous morphology with spherical shape structural elements and rough surface relief of the coatings. XRD and TEM studies exhibited the amorphous structure of the CaP coating. With increasing the process voltage to 300-400 V, the crystalline phases, such as CaHPO4 and β-Ca2P207, were formed onto the coatings. The annealing leads to the formation of complex poly-phase structure with crystalline phases: CaTi4(PO4)6, β-Ca2P2O7, TiP2O7, TiNb(PO4)3, TiO2, NbO2, and Nb2O5. The applied voltage and process duration in the ranges of 200-250 V and 5-10 min, respectively, revealed the coating formed on Ti and Ti-40Nb with optimal properties: thickness of 40-70μm, porosity of 20%-25%, roughness (Ra) of 2.5-5.0 μm, adhesion strength of 15-30 MPa, and Ca/P mole ratio of 0.5-0.7.
基金This work was financially supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia through Project Nos.ON174004 and ON172019the PhD fellowship of Slađana Laketić.
文摘The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.
基金Funded partly by the National Natural Science Foundation of China(No.5043430)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116120110012)the Natural Science Foundation of Shaanxi Province of China(No.2010JM6010)
文摘The evolution of hardness homogeneity in commercially pure titanium processed by equal channel angular pressing (ECAP) for up to 4 passes following route C at room temperature using a die of 90° was investigated by recording the microhardness on the cross-sectional and longitudinal planes of each billet. The results show that the hardness increases significantly after the first pass although there is a region of lower hardness on the cross-section running in a band near the bottom surface of the billet, and then increases by very small amounts in subsequent passes. With increasing numbers of passes, the lower hardness region near the bottom surface disappears and the microhardness values are distributed homogeneously throughout the cross- sectional and longitudinal planes after 4 passes of ECAP. The microhardness values in the central regions of the billet are slightly lower than those of the top and bottom surfaces. The results show that good homogeneity may be achieved throughout the billets after 4 passes of ECAP following route C.
文摘The dissimilar joining of biodegradable magnesium alloy to pure commercial titanium by rotational friction welding with rotational speeds of 1100,1200 and 1300 r/min for the production of bio-screw was investigated.The metallographic analysis revealed that a good joining was obtained at the Ti/Mg alloy joint.On the magnesium alloy side,various regions such as the weld center zone(WCZ),dynamic recrystallization zone(DRX),thermo-mechanically affected zone(TMAZ)and partially deformed zone(PDZ)were observed.The highest tensile and shear strengths were 173 and 103.2 MPa,respectively at a rotational speed of 1300 r/min.The Ti/Mg alloy dissimilar friction welded joint failed at the vicinity of the intermetallic zone containing Ti3Al phase.The hardness values from the base metal magnesium alloy to the joining point increased mainly due to grain refinement(8.57μm in diameter)and the presence of titanium particles,while the hardness values were constant on the titanium side.It was also found that the corrosion rate of the Ti/Mg alloy joint was higher compared with that of the Ti and Mg alloy from the immersion studies.Additionally,the sample with a rotational speed of 1300 r/min showed better biocompatibility and a cell viability of 98.12%due to better corrosion resistance.
基金Project(50171017) support by the National Natural Science Foundation of China project(2001101054) supported by the Science and Technology Foundation of Liaoning Province project(02H25008) supported by the Aeronautical Basic Science Foundation
文摘The surface nanostructures of commercial pure titanium was realized by the modified shot peening equipment commonly used in industry through the special treatment process. The results show that high-energy-shot-peening(HESP) commonly used to prepare nanostructured surface layers can be achieved by the increase of pill size, pill speed, and treatment time in the commercial shot peening equipment. XRD, SEM and TEM were used to characterize the surface layer microstructure of treated specimens. The analytic results show that the main deformation mode of commercial pure Ti is twinning. At the beginning of deformation, the dislocations are formed and twins occur within or on plane, then twins in intersection plane appear, and at last the twin characteristics disappear in the surface layer after longer treatment time. The deformation layer depth increases with treatment time in a certain period when the pill size and speed are unchanged. And in the severe plastic deformation (SPD) layer in which the twins are not identified easily by using SEM, the nanocrystalline microstructures are found under TEM. The finest grain size in the surface layer is about 40 nm, and the depth of nanostructured layers is over 60 μm. The microhardness of the nanostructured surface layers is enhanced significantly after shot peening compared with that of the initial simple.
基金financial support from the Shenzhen Development and Reform Commission Engineering Laboratory Project(Shenzhen development and Reform2015-1033)the Shenzhen Science and Technology supporting Plan Project(GJHS20160331183313435)the China Postdoctoral Science Foundation(No.2017M620770)
文摘The effects of electropulsing-assisted ultrasonic surface rolling process on surface mechanical properties andmicrostructure evolution of commercial pure titanium were investigated. It was found that the surface mechanical prop-erties were significantly enhanced compared to traditional ultrasonic surface rolling process (USRP), leading to smallersurface roughness and smoother morphology with fewer cracks and defects. Moreover, surface strengthened layer wasremarkably enhanced with deeper severe plastic deformation layer and higher surface hardness. Remarkable enhancementsof surface mechanical properties may be related to the gradient refined microstructure, the enhanced severe plasticdeformation layer and the accelerated formation of sub-boundaries and twins induced by coupling effects of USRP andelectropulsing. The primary intrinsic reasons for these improvements may be attributed to the thermal and athermal effectscaused by electropulsing treatment, which would accelerate dislocation mobility and atom diffusion.