Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,for...Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.展开更多
Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in South...Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in Southeast China, and that two representative tree species (Castanopisi carlesii and Cunninghamia lanceolata) may have different soil microbial community composition. Phospholipids fatty acid analysis (PLFA) of seasonal shifts and was used to assess the effect vegetation types on soil microbial community structure. A total of 22 different PLFAs were identified from all the soil samples. The bacterial PLFAs accounted for 62.37% of the total PLFAs, followed by fungi (28.94%), and the minimum was actinomycetes (6.41%). Overall, the level of PLFAs in C. carlesii soil was greater than those in C. lanceolata soil, and significant differences were observed in some seasons. The amounts of total, bacteria, actinomycic and fungal PLFAs significantly changed with the seasons and followed a sequence order (summer 〉 autumn 〉 spring 〉 winter). The bacteria/fungi PLFAs and G (+)/G (-) PLFAs of two vegetation types also changed with the seasons and the ratios in summer and autumn were higher than those in spring and winter. The correlation analysis of microbial PLFAs and soil physicochemical properties showed that the total, bacteria, fungal, actinomycic, G (+) and G (-) PLFAs were significantly positive correlation with TOC, TN, TP, TK and moisture content. We concluded that the seasonal shifts and vegetation types affect soil microbial community composition by changing the soil physicochemical properties.展开更多
Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recogni...Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recognized four different vertical distribution patterns of pigments: chlorophyll a (Chl a)-like type, divinyl chlorophyll a (DV Chl a) type, even distribution type, and surface type. The average value of ratios of accessory photo-protective pigments (APP) to accessory photo-synthetic pigments was 0.89±0.63 in the upper 50 m and 0.16±0.06 below 50 m depth. With increasing depth, APP decreased and photo-synthetically active radiation was attenuated. There was an obvious succession in the phytoplankton community from inshore to the open sea. Diatoms were dominant in the inshore region, while pelagophytes, Prochlorococcus, cyanobacteria and prymnesiophytes were dominant in the open sea. The vertical distribution of phytoplankton also differed greatly from inshore to the open sea. In the coastal and shelf region, diatoms were important components in the whole water column. Cyanobacteria also had a high abundance at the Subsurface Chlorophyll a Maxima (SCM) in the shelf region. In the slope and open sea, Prochlorococcus and cyanobacteria were important groups above the SCM, while pelagophytes dominated below the SCM.展开更多
Soil nematode communities can provide valuable information about the structure and functions of soil food webs,and are sensitive to agricultural practices,including short-term straw incorporation.However,currently,suc...Soil nematode communities can provide valuable information about the structure and functions of soil food webs,and are sensitive to agricultural practices,including short-term straw incorporation.However,currently,such effects under longterm straw incorporation conditions at different fertility levels are largely unknown.Thus,we conducted a 13-year ongoing experiment to evaluate the effects of long-term straw incorporation on the structure and functions of the soil food web in low and high fertility soils through analyzing its effects on nematode communities,food web indices and metabolic footprints.Four treatments were included:straw removal(–S)under non-fertilized(–NPK)or fertilized(+NPK)conditions;and straw incorporation(+S)under–NPK or+NPK conditions.Soil samples from a 0–20 cm depth layer were collected when wheat and rice were harvested.Compared with straw removal,straw incorporation increased the abundances of total nematodes,bacterivores,plant-parasites and omnivores-predators,as well the relative abundances of omnivores-predators with increases of 73.06,89.29,95.31,238.98,and 114.61%in–NPK soils and 16.23,2.23,19.01,141.38,and 90.23%in+NPK soils,respectively.Regardless of sampling times and fertilization effects,straw incorporation increased the diversity and community stability of nematodes,as indicated by the Shannon-Weaver diversity index and maturity index.Enrichment and structure index did not show significant responses to straw incorporation,but a slight increase was observed in the structure index.The analysis of nematode metabolic footprints showed that straw incorporation increased the plant-parasite footprint and structure footprint by 97.27 and 305.39%in–NPK soils and by 11.29 and 149.56%in+NPK soils,but did not significantly influence enrichment,bacterivore and fungivore footprints.In conclusion,long-term straw incorporation,particularly under a low fertility level,favored the soil nematodes and regulated the soil food web mainly via a top-down effect.展开更多
Background:Soil fungi play crucial roles in ecosystem functions.However,how snow cover change associated with winter warming affects soil fungal communities remains unclear in the Tibetan forest.Methods:We conducted a...Background:Soil fungi play crucial roles in ecosystem functions.However,how snow cover change associated with winter warming affects soil fungal communities remains unclear in the Tibetan forest.Methods:We conducted a snow manipulation experiment to explore immediate and legacy effects of snow exclusion on soil fungal community diversity and composition in a spruce forest on the eastern Tibetan Plateau.Soil fungal communities were performed by the high throughput sequencing of gene-fragments.Results:Ascomycota and Basidiomycota were the two dominant fungal phyla and Archaeorhizomyces,Aspergillus and Amanita were the three most common genera across seasons and snow manipulations.Snow exclusion did not affect the diversity and structure of soil fungal community in both snow-covered and snow-free seasons.However,the relative abundance of some fungal communities was different among seasons.Soil fungal groups were correlated with environmental factors(i.e.,temperature and moisture)and soil biochemical variables(i.e.,ammonium and enzyme).Conclusions:These results suggest that the season-driven variations had stronger impacts on soil fungal community than short-term snow cover change.Such findings may have important implications for soil microbial processes in Tibetan forests experiencing significant decreases in snowfall.展开更多
The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community compos...The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community composition(repre sented by 16 S rRNA)of six stations was investigated within the water column in the seamount area of Tropical Western Pacific Ocean(TWPO)in May 2019.The seawater has dissolved oxygen(DO)concentration of 3.01-6.68 mg/L and the core of the oxygen minimum zones was located between the depths of 650 m and 1750 m.The bacterial alpha-diversity showed unimodal pattern with the decreasing DO with depths and peaked in the upper oxycline(UO)of OMZs.The bacterial community structure of the mixed layer(ML)and the bottom layer clustered and separated from each other,while those of UO and the OMZ core(OM)clustered and overlapped.Overall,bacterial community composition transitioned from being Alphaproteobacteria and Gammaproteobacteria-dominant in ML to being Gammaproteobacteria and Nitrososphaeria/Deltaproteobacteria-dominant in UO and OM,and then changed to being Clostridia and unidentified Actinobacteria-dominant in the bottom layer.Moreover,both bacterial alpha-diversity and the abundant classes fitted varying sectioned functions with DO.The DO solely explained 40.37%of the variation of bacterial community composition among layers(P<0.001).The predicted function profiling showed that the water column was predominant by chemoheterotrophy,cyanobacteria,and photoautotrophy in ML,by chemoheterotrophy and nitrate/sulfide cycling in UO and OM,and by chemoheterotrophy and ferme ntation in the bottom layer.Our findings revealed the DO-associated variation in bacterial diversity and community composition,and help to clarify the potential responses of microbes and their involved biogeochemical processes to the expansion and intensification of OMZs.展开更多
We characterized variations in bacterioplankton community composition(BCC) in mesocosms subject to three different treatments. Two groups contained fish(group one: Cyprinus carpio; group two: Hypophthalmichthys molitr...We characterized variations in bacterioplankton community composition(BCC) in mesocosms subject to three different treatments. Two groups contained fish(group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis(DGGE) and real-time quantitative PCR(q PCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly diff erent between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis(RDA) result demonstrated that the BCC was closely related to the bottom-up(total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces(biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa(heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.展开更多
To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two...To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two types of water bodies:a segment of the Jialing River near its confluence with the Yangtze River as an example of the river-lake type,and Shuanglong Lake in Chongqing as an example of the lake type.In total,107 species belonging to 58 genera of 7 phyla were identified in the study area of the Jialing River,dominated by three groups with 49.5% diatoms,29.0% chlorophytes,and 11.4% cyanobacteria in the community composition.There were 122 species belonging to 66 genera of 8 phyla in Shuanglong Lake,dominated by the same three groups with 19.7% diatoms,48.4% chlorophytes,and 22.2% cyanobacteria.The densities of total algae and individual dominant groups were all much higher in the lake.More species of diatoms were found in the river-lake segment;whereas more chlorophyte species and cyanobacteriaum species were in the lake.There were 17 dominant species including 8 diatoms,4 chlorophytes,3 cyanobacteria and 2 cryptophytes in the river-lake segment,and 21 species in the lake,including 2 diatoms,9 chlorophytes,6 cyanobacteria,3 cryptophytes and a dinoflagellate.In eutrophic conditions,chlorophytes and cyanobacteria may proliferate in a lake-type area and diatoms may cause algal bloom in a relatively faster-flow lake-river type area.展开更多
High-throughput sequencing technology is increasingly used in the study of nematode biodiversity.However,the annotation difference of commonly used primers and reference databases on nematode community is still unclea...High-throughput sequencing technology is increasingly used in the study of nematode biodiversity.However,the annotation difference of commonly used primers and reference databases on nematode community is still unclear.We compared two pairs of primers(3NDf/C_1132rmod,NF1F/18Sr2bR)and three databases(NT_V20200604,SILVA138/18s Eukaryota and PR2_v4.5 databases)on the determination of nematode community from four different vegetation types in Changbai Mountain,including mixed broadleaf-conifer forest,dark coniferous forest,betula ermanii Cham and alpine tundra.Our results showed that the selection of different primers and databases influenced the annotation of nematode taxa,but the diversity of nematode community showed consistent pattern among different vegetation types.Our findings emphasize that it is necessary to select appropriate primer and database according to the target taxonomic level.The difference in primers will affect the result of nematode taxa at different classification levels,so sequencing analysis cannot be used for comparison with studies using different primers.In terms of annotation effect in this study,3NDf/C_1132rmod primers with NT_v20200604 database could provide more information than other combinations at the genus or species levels.展开更多
Light climate is of key importance for the growth, community composition of submerged macrophytes in lakes and, they, in turn, are affected by lake depth and the degree of eutrophication. To test the relationships bet...Light climate is of key importance for the growth, community composition of submerged macrophytes in lakes and, they, in turn, are affected by lake depth and the degree of eutrophication. To test the relationships between submerged macrophyte presence and the ratio of Secchi disk depth(SDD) to water depth, i.e. SDD/depth, nutrients and wind, we conducted an extensive sampling campaign in a macrophyte-dominated area of the eastern region( n = 36) in 2016 in Lake Taihu, China, and combined the data gathered with results from extensive physico-chemical monitoring data from the entire lake. We confirmed that SDD/Depth is the primary factor controlling the community composition of macrophytes and showed that plant abundance increased with increasing SDD/Depth ratio( p < 0.01), but that only SDD/Depth > 0.4 ensured growth of submerged macrophytes. Total phosphorus and total nitrogen also influenced the growth and community composition of macrophytes( p < 0.01), while Chl a was an indirectly affecting factor by reducing underwater light penetration. Wave height significantly influenced plant abundance( p < 0.01), whereas it had little effect on the biomass( p > 0.05). The key to restore the macrophyte beds in the lake is to reduce the nutrient loading. A decrease of the water level may contribute as well in the shallow bays but will not bring plants back in the main part of the lake. As the tolerance of shade and nutrients varied among the species studied, this should be taken into account in the restoration of lakes by addition of plants.展开更多
Aboveground litter inputs and root exudates provide basal resources for soil communities,however,their relative contributions to soil food web are still not well understood.Here,we conducted a field manipulative exper...Aboveground litter inputs and root exudates provide basal resources for soil communities,however,their relative contributions to soil food web are still not well understood.Here,we conducted a field manipulative experiment to differentiate the effects of litter inputs and living root on nematode community composition of surface and subsoils in a young Acacia crassicapa plantation in southern China.Our results showed that both litter addition and root presence significantly enhanced soil nematode abundance by 17.3%and 35.3%,respectively.Litter addition altered nematode trophic group composition,decreased fungivore to bacterivore ratio,and enhanced maturity index and structure index,which led to a bacterial-based energy channel and a more complex food web structure.However,root presence had a limited impact on the nematode community composition and ecological indices.Despite nematodes surface assembly,soil depth did not affect nematode trophic group composition or ecological index.Our findings highlight the importance of litter inputs in shaping soil nematode community structure and regulating soil energy channel.展开更多
The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variat...The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood.Using Illumina MiSeq DNA sequencing,we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City:the hilltop(300 m a.s.l.),the hillside(150 m a.s.l.),and the foot of the hill(0 m a.s.l.).The results showed that edaphic properties differed significantly with elevation.Bacterial community composition,rather than alpha diversity,strongly differed among the three elevations(Adonis:R2=0.12,P<0.01).Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH,elevation,total nitrogen(TN),and dissolved organic carbon(DOC).The degree scores,betweenness centralities,and composition of keystone species were distinct among the elevations.These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain.Soil pH and elevation together drove the smallscale elevational distribution of soil bacterial communities.This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients.展开更多
The community dynamics and potential carbon ?xation of intertidal macroalgae were investigated monthly from April 2014 to April 2015 in the northwest coast of Yellow Sea. Seasonal variations in biomass and carbon ?xat...The community dynamics and potential carbon ?xation of intertidal macroalgae were investigated monthly from April 2014 to April 2015 in the northwest coast of Yellow Sea. Seasonal variations in biomass and carbon ?xation were presented and showed close relationship with community structure.The carbon ?xation rate ranged from 0.48±0.13 mg C/(g FW ·d) to 4.35±0.12 mg C/(g FW ·d). Sargassum thunbergii, Chondrus ocellatus and Ulva intestinalis were three most in?uential species which contributed27%, 21.9% and 18.5% variation of carbon ?xation rate, respectively. Standing carbon stocks ranged from7.52 g C/m^2 to 41.31 g C/m^2, and estimated carbon stocks varied from 11.77 g C/m 2 to 96.49 g C/m^2. The larger dif ference between estimated and standing carbon stocks implied that more ?xed carbon was exported from the community in summer and autumn than in winter. This study suggested that intertidal macroalgal community could provide a potential function in carbon ?xation of coastal ecosystem.展开更多
Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon si...Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon sink storage and extractive resource reservoirs.Despite their importance,effective ecological assessment is in its infancy compared to current conventional surveys carried out in freshwater ecosystems.The integration of environmental DNA(eDNA)analysis and traditional techniques has the potential to transform biomonitoring processes,particularly in remote and understudied saline environments.In this context,this preliminary study aims to explore the potential of eDNA coupled with conventional approaches by targeting five hypersaline lakes at Rottnest Island(Wadjemup)in Western Australia.We focused on the invertebrate community,a widely accepted key ecological indicator to assess the conservational status in rivers and lakes.The combination of metabarcoding with morphology-based taxonomic analysis described 16 taxa belonging to the orders Anostraca,Diptera,Isopoda,and Coleoptera.DNA-based diversity assessment revealed more taxa at higher taxonomic resolution than the morphology-based taxonomic analysis.However,certain taxa(i.e.,Ephydridae,Stratyiomidae,Ceratopogonidae)were only identified via net surveying.Overall,our results indicate that great potential resides in combining conventional net-based surveys with novel eDNA approaches in saline and hypersaline lakes.Indeed,urgent and effective conservational frameworks are required to contrast the enormous pressure that these ecosystems are increasingly facing.Further investigations at larger spatial temporal scales will allow consolidation of robust,reliable,and affordable biomonitoring frameworks in the underexplored world of saline wetlands.展开更多
Variations of precipitation have great impacts on soil carbon cycle and decomposition of soil organic matter.Soil bacteria are crucial participants in regulating these ecological processes and vulnerable to altered pr...Variations of precipitation have great impacts on soil carbon cycle and decomposition of soil organic matter.Soil bacteria are crucial participants in regulating these ecological processes and vulnerable to altered precipitation.Studying the impacts of altered precipitation on soil bacterial community structure can provide a novel insight into the potential impacts of altered precipitation on soil carbon cycle and carbon storage of grassland.Therefore,soil bacterial community structure under a precipitation manipulation experiment was researched in a semi-arid desert grassland in Chinese Loess Plateau.Five precipitation levels,i.e.,control,reduced and increased precipitation by 40%and 20%,respectively(referred here as CK,DP40,DP20,IP40,and IP20)were set.The results showed that soil bacterial alpha diversity and rare bacteria significantly changed with altered precipitation,but the dominant bacteria and soil bacterial beta diversity did not change,which may be ascribed to the ecological strategy of soil bacteria.The linear discriminate analysis(LDA)effect size(LEfSe)method found that major response patterns of soil bacteria to altered precipitation were resource-limited and drought-tolerant populations.In addition,increasing precipitation greatly promoted inter-species competition,while decreasing precipitation highly facilitated inter-species cooperation.These changes in species interaction can promote different distribution ratios of bacterial populations under different precipitation conditions.In structural equation model(SEM)analysis,with changes in precipitation,plant growth characteristics were found to be drivers of soil bacterial community composition,while soil properties were not.In conclusion,our results indicated that in desert grassland ecosystem,the sensitive of soil rare bacteria to altered precipitation was stronger than that of dominant taxa,which may be related to the ecological strategy of bacteria,species interaction,and precipitation-induced variations of plant growth characteristics.展开更多
[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by ...[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by the chloroform fumigation extraction method;the microbial community composition and Nitrogen cycling microbial functional groups were investigated by the Dilution plate culture method and the most probable number methods respectively.[Result] The microbial biomass carbon and nitrogen,in rhizosphere soil of Dongxiang Wild Rice was 83.02±18.23 mg/kg soil and 16.98±2.54 mg/kg soil,which was lower than that of ordinary cultivated rice;The relationship between the number of culturable microbial groups was bacteriaactinomycetesfungi,and the Nitrogen cycling microbial physiological groups was as the following:ammonifying bacteriaaerobic azotobacteriadenitrobacteriaanaerobic azotobacterianitrobacterianitrosobacteria.[Conclusion] The microbial community in the rhizosphere soil of Dongxiang Wild Rice was different from that of the ordinary cultivated rice.展开更多
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
To explore the spatial heterogeneity of plankton communities in a deep artificial lake (Songhua Lake, China), samples were collected at seven sites. Samples were investigated by denaturing gradient gel electrophores...To explore the spatial heterogeneity of plankton communities in a deep artificial lake (Songhua Lake, China), samples were collected at seven sites. Samples were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of the PCR-amplified 16S and 18S rRNA genes and specific bands were sequenced. Cluster analysis of the DGGE profiles revealed that all of the samples grouped into two distinct clusters, in accordance with sampling site; while in each cluster, the divergence of sub-clusters correlated with sampling depth. Sequence analysis of selected dominant DGGE bands revealed that most sequenced phylotypes (84%) exhibited 〉97% similarity to the closest sequences in GenBank, and were affiliated with ten common freshwater plankton phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Bacillariophyta, Pyrrophyta, Cryptophyta, Ciliophora, Stramenopiles, and Rotifera). Several of these groups are also found worldwide, indicating the cosmopolitan distribution of the phylotypes. The relationships between DGGE patterns and environmental factors were analyzed by redundancy analysis (RDA). The results suggested that, total nitrogen, nitrate, nitrite, temperature were strongly correlated with the variation ammonia, and CODMn concentrations, and water in plankton composition.展开更多
Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community ...Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community composition,structure,diversity as well as function.In this study,the bacterial community composition and diversity of a series of soils treated by autoclaving,which coming from the same original soil sample and showing gradient fungistasis to the target soil-borne pathogen fungi Fusarium grami...展开更多
A quarterly study of mesozooplankton community structure and environmental variables in the Hangzhou Bay was conducted to examine the response of mesozooplankton community to the variation of water mass and environmen...A quarterly study of mesozooplankton community structure and environmental variables in the Hangzhou Bay was conducted to examine the response of mesozooplankton community to the variation of water mass and environmental condition. The southeast coast of China is a typical region under the intensive influence of Asia monsoon and freshwater discharge from rivers. The water mass and environmental condition of the Hangzhou Bay, which were influenced by the interaction of currents, freshwater discharge of the Qiantang River and Changjiang River Plume, showed significant seasonal variation. Our results showed that both biomass and abundance were significantly higher in summer((247.7±148.8) mg/m^3 and(350.9±215.6) ind./m^3, respectively)than those in other seasons. Four eco-geographical regions were divided based on the cluster analysis of zooplankton community of the Hangzhou Bay throughout the year, except for winter. Monsoon and the dissolved inorganic nitrogen(DIN) input from freshwater discharge of the Qiantang River and Changjiang River resulted in temporal and spatial variations of environmental gradient in the Hangzhou Bay, which significantly influenced the structure of mesozooplankton community. Redundancy analysis(RDA) indicated that the mesozooplankton community structure was strictly correlated with the DIN gradient, while salinity gradient showed a weak influence in the Hangzhou Bay.展开更多
基金supported by the National Natural Science Foundation of China(U22A20501)the National Key Research and Development Plan of China(2022YFD1500601)+4 种基金the National Science and Technology Fundamental Resources Investigation Program of China(2018FY100304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28090200)the Liaoning Province Applied Basic Research Plan Program,China(2022JH2/101300184)the Shenyang Science and Technology Plan Program,China(21-109-305)the Liaoning Outstanding Innovation Team,China(XLYC2008015)。
文摘Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.
基金supported by the National Natural Science Foundation of China (Grant No.31500443)Fujian Province Department of Education Foundation (Grant No.JA15178)
文摘Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in Southeast China, and that two representative tree species (Castanopisi carlesii and Cunninghamia lanceolata) may have different soil microbial community composition. Phospholipids fatty acid analysis (PLFA) of seasonal shifts and was used to assess the effect vegetation types on soil microbial community structure. A total of 22 different PLFAs were identified from all the soil samples. The bacterial PLFAs accounted for 62.37% of the total PLFAs, followed by fungi (28.94%), and the minimum was actinomycetes (6.41%). Overall, the level of PLFAs in C. carlesii soil was greater than those in C. lanceolata soil, and significant differences were observed in some seasons. The amounts of total, bacteria, actinomycic and fungal PLFAs significantly changed with the seasons and followed a sequence order (summer 〉 autumn 〉 spring 〉 winter). The bacteria/fungi PLFAs and G (+)/G (-) PLFAs of two vegetation types also changed with the seasons and the ratios in summer and autumn were higher than those in spring and winter. The correlation analysis of microbial PLFAs and soil physicochemical properties showed that the total, bacteria, fungal, actinomycic, G (+) and G (-) PLFAs were significantly positive correlation with TOC, TN, TP, TK and moisture content. We concluded that the seasonal shifts and vegetation types affect soil microbial community composition by changing the soil physicochemical properties.
基金Supported by the Key Program of National Natural Science Foundation of China (No. 90711006)
文摘Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recognized four different vertical distribution patterns of pigments: chlorophyll a (Chl a)-like type, divinyl chlorophyll a (DV Chl a) type, even distribution type, and surface type. The average value of ratios of accessory photo-protective pigments (APP) to accessory photo-synthetic pigments was 0.89±0.63 in the upper 50 m and 0.16±0.06 below 50 m depth. With increasing depth, APP decreased and photo-synthetically active radiation was attenuated. There was an obvious succession in the phytoplankton community from inshore to the open sea. Diatoms were dominant in the inshore region, while pelagophytes, Prochlorococcus, cyanobacteria and prymnesiophytes were dominant in the open sea. The vertical distribution of phytoplankton also differed greatly from inshore to the open sea. In the coastal and shelf region, diatoms were important components in the whole water column. Cyanobacteria also had a high abundance at the Subsurface Chlorophyll a Maxima (SCM) in the shelf region. In the slope and open sea, Prochlorococcus and cyanobacteria were important groups above the SCM, while pelagophytes dominated below the SCM.
基金This study was funded by the Open Project of Key Laboratory of the Ministry of Agriculture and Rural Affairs,China(KLFAW201705)the National Natural Science Foundation of China(31870501)+1 种基金the Technological Achievements Cultivation Project of Hubei Academy of Agricultural Sciences(2017CGPY01)the Key Project of Technological Innovation in Hubei Province,China(2018ABA091).
文摘Soil nematode communities can provide valuable information about the structure and functions of soil food webs,and are sensitive to agricultural practices,including short-term straw incorporation.However,currently,such effects under longterm straw incorporation conditions at different fertility levels are largely unknown.Thus,we conducted a 13-year ongoing experiment to evaluate the effects of long-term straw incorporation on the structure and functions of the soil food web in low and high fertility soils through analyzing its effects on nematode communities,food web indices and metabolic footprints.Four treatments were included:straw removal(–S)under non-fertilized(–NPK)or fertilized(+NPK)conditions;and straw incorporation(+S)under–NPK or+NPK conditions.Soil samples from a 0–20 cm depth layer were collected when wheat and rice were harvested.Compared with straw removal,straw incorporation increased the abundances of total nematodes,bacterivores,plant-parasites and omnivores-predators,as well the relative abundances of omnivores-predators with increases of 73.06,89.29,95.31,238.98,and 114.61%in–NPK soils and 16.23,2.23,19.01,141.38,and 90.23%in+NPK soils,respectively.Regardless of sampling times and fertilization effects,straw incorporation increased the diversity and community stability of nematodes,as indicated by the Shannon-Weaver diversity index and maturity index.Enrichment and structure index did not show significant responses to straw incorporation,but a slight increase was observed in the structure index.The analysis of nematode metabolic footprints showed that straw incorporation increased the plant-parasite footprint and structure footprint by 97.27 and 305.39%in–NPK soils and by 11.29 and 149.56%in+NPK soils,but did not significantly influence enrichment,bacterivore and fungivore footprints.In conclusion,long-term straw incorporation,particularly under a low fertility level,favored the soil nematodes and regulated the soil food web mainly via a top-down effect.
基金funded by the National Natural Science Foundation of China(Nos.31700542,32071745,31870602,31800519 and 31901295)Program of Sichuan Excellent Youth Sci-Tech Foundation(No.2020JDJQ0052)the National Key Research and Development Program of China(Nos.2016YFC0502505 and 2017YFC0505003)。
文摘Background:Soil fungi play crucial roles in ecosystem functions.However,how snow cover change associated with winter warming affects soil fungal communities remains unclear in the Tibetan forest.Methods:We conducted a snow manipulation experiment to explore immediate and legacy effects of snow exclusion on soil fungal community diversity and composition in a spruce forest on the eastern Tibetan Plateau.Soil fungal communities were performed by the high throughput sequencing of gene-fragments.Results:Ascomycota and Basidiomycota were the two dominant fungal phyla and Archaeorhizomyces,Aspergillus and Amanita were the three most common genera across seasons and snow manipulations.Snow exclusion did not affect the diversity and structure of soil fungal community in both snow-covered and snow-free seasons.However,the relative abundance of some fungal communities was different among seasons.Soil fungal groups were correlated with environmental factors(i.e.,temperature and moisture)and soil biochemical variables(i.e.,ammonium and enzyme).Conclusions:These results suggest that the season-driven variations had stronger impacts on soil fungal community than short-term snow cover change.Such findings may have important implications for soil microbial processes in Tibetan forests experiencing significant decreases in snowfall.
基金the National Natural Science Foundation of China(No.91958103)the Science&Technology Basic Resources Investigation Program of China(No.2017FY100802)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060401)。
文摘The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community composition(repre sented by 16 S rRNA)of six stations was investigated within the water column in the seamount area of Tropical Western Pacific Ocean(TWPO)in May 2019.The seawater has dissolved oxygen(DO)concentration of 3.01-6.68 mg/L and the core of the oxygen minimum zones was located between the depths of 650 m and 1750 m.The bacterial alpha-diversity showed unimodal pattern with the decreasing DO with depths and peaked in the upper oxycline(UO)of OMZs.The bacterial community structure of the mixed layer(ML)and the bottom layer clustered and separated from each other,while those of UO and the OMZ core(OM)clustered and overlapped.Overall,bacterial community composition transitioned from being Alphaproteobacteria and Gammaproteobacteria-dominant in ML to being Gammaproteobacteria and Nitrososphaeria/Deltaproteobacteria-dominant in UO and OM,and then changed to being Clostridia and unidentified Actinobacteria-dominant in the bottom layer.Moreover,both bacterial alpha-diversity and the abundant classes fitted varying sectioned functions with DO.The DO solely explained 40.37%of the variation of bacterial community composition among layers(P<0.001).The predicted function profiling showed that the water column was predominant by chemoheterotrophy,cyanobacteria,and photoautotrophy in ML,by chemoheterotrophy and nitrate/sulfide cycling in UO and OM,and by chemoheterotrophy and ferme ntation in the bottom layer.Our findings revealed the DO-associated variation in bacterial diversity and community composition,and help to clarify the potential responses of microbes and their involved biogeochemical processes to the expansion and intensification of OMZs.
基金Supported by the National Key Technology R&D Program of China(No.2014BAC09B02)the National Water Pollution Control and Management Technology Major Projects(No.2012ZX07101-002)the High-Level Scientific Research Foundation for the Introduction of Talent(No.E07016043)
文摘We characterized variations in bacterioplankton community composition(BCC) in mesocosms subject to three different treatments. Two groups contained fish(group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis(DGGE) and real-time quantitative PCR(q PCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly diff erent between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis(RDA) result demonstrated that the BCC was closely related to the bottom-up(total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces(biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa(heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.
基金Funded by the Natural Science Foundation of China (No.50178070)the Natural Science Foundation of Chongqing (Nos. 8091 and 7136)
文摘To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two types of water bodies:a segment of the Jialing River near its confluence with the Yangtze River as an example of the river-lake type,and Shuanglong Lake in Chongqing as an example of the lake type.In total,107 species belonging to 58 genera of 7 phyla were identified in the study area of the Jialing River,dominated by three groups with 49.5% diatoms,29.0% chlorophytes,and 11.4% cyanobacteria in the community composition.There were 122 species belonging to 66 genera of 8 phyla in Shuanglong Lake,dominated by the same three groups with 19.7% diatoms,48.4% chlorophytes,and 22.2% cyanobacteria.The densities of total algae and individual dominant groups were all much higher in the lake.More species of diatoms were found in the river-lake segment;whereas more chlorophyte species and cyanobacteriaum species were in the lake.There were 17 dominant species including 8 diatoms,4 chlorophytes,3 cyanobacteria and 2 cryptophytes in the river-lake segment,and 21 species in the lake,including 2 diatoms,9 chlorophytes,6 cyanobacteria,3 cryptophytes and a dinoflagellate.In eutrophic conditions,chlorophytes and cyanobacteria may proliferate in a lake-type area and diatoms may cause algal bloom in a relatively faster-flow lake-river type area.
基金supported by the National Natural Science Foundation of China(Grant No.U20A2083),the K.C.Wong Education Foundation(Grant No.GJTD-2019-10)China Postdoctoral Science Foundation(Grant No.2021T140697).
文摘High-throughput sequencing technology is increasingly used in the study of nematode biodiversity.However,the annotation difference of commonly used primers and reference databases on nematode community is still unclear.We compared two pairs of primers(3NDf/C_1132rmod,NF1F/18Sr2bR)and three databases(NT_V20200604,SILVA138/18s Eukaryota and PR2_v4.5 databases)on the determination of nematode community from four different vegetation types in Changbai Mountain,including mixed broadleaf-conifer forest,dark coniferous forest,betula ermanii Cham and alpine tundra.Our results showed that the selection of different primers and databases influenced the annotation of nematode taxa,but the diversity of nematode community showed consistent pattern among different vegetation types.Our findings emphasize that it is necessary to select appropriate primer and database according to the target taxonomic level.The difference in primers will affect the result of nematode taxa at different classification levels,so sequencing analysis cannot be used for comparison with studies using different primers.In terms of annotation effect in this study,3NDf/C_1132rmod primers with NT_v20200604 database could provide more information than other combinations at the genus or species levels.
基金jointly funded by the National Key R&D Program of China(No.2017YFC0405205)the Major Projects on Control and Rectification of Water Body Pollution(No.2017ZX07203–004)+1 种基金the National Natural Science Foundation of China(Nos.42071118 and 41621002)supported by the TüBITAK,BIDEB program 2232.
文摘Light climate is of key importance for the growth, community composition of submerged macrophytes in lakes and, they, in turn, are affected by lake depth and the degree of eutrophication. To test the relationships between submerged macrophyte presence and the ratio of Secchi disk depth(SDD) to water depth, i.e. SDD/depth, nutrients and wind, we conducted an extensive sampling campaign in a macrophyte-dominated area of the eastern region( n = 36) in 2016 in Lake Taihu, China, and combined the data gathered with results from extensive physico-chemical monitoring data from the entire lake. We confirmed that SDD/Depth is the primary factor controlling the community composition of macrophytes and showed that plant abundance increased with increasing SDD/Depth ratio( p < 0.01), but that only SDD/Depth > 0.4 ensured growth of submerged macrophytes. Total phosphorus and total nitrogen also influenced the growth and community composition of macrophytes( p < 0.01), while Chl a was an indirectly affecting factor by reducing underwater light penetration. Wave height significantly influenced plant abundance( p < 0.01), whereas it had little effect on the biomass( p > 0.05). The key to restore the macrophyte beds in the lake is to reduce the nutrient loading. A decrease of the water level may contribute as well in the shallow bays but will not bring plants back in the main part of the lake. As the tolerance of shade and nutrients varied among the species studied, this should be taken into account in the restoration of lakes by addition of plants.
基金the NSFC-Henan Joint Fund(U1804101,U1904204)Henan Key Scientific and Technological Project(192102110160)+1 种基金the National Natural Science Foundation of China(31800405)Innovation Scientists and Technicians Troop Construction Projects of Henan Province.
文摘Aboveground litter inputs and root exudates provide basal resources for soil communities,however,their relative contributions to soil food web are still not well understood.Here,we conducted a field manipulative experiment to differentiate the effects of litter inputs and living root on nematode community composition of surface and subsoils in a young Acacia crassicapa plantation in southern China.Our results showed that both litter addition and root presence significantly enhanced soil nematode abundance by 17.3%and 35.3%,respectively.Litter addition altered nematode trophic group composition,decreased fungivore to bacterivore ratio,and enhanced maturity index and structure index,which led to a bacterial-based energy channel and a more complex food web structure.However,root presence had a limited impact on the nematode community composition and ecological indices.Despite nematodes surface assembly,soil depth did not affect nematode trophic group composition or ecological index.Our findings highlight the importance of litter inputs in shaping soil nematode community structure and regulating soil energy channel.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB15010101)the National Natural Science Foundation of China(41907039)the China Biodiversity Observation Networks(Sino BON).
文摘The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood.Using Illumina MiSeq DNA sequencing,we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City:the hilltop(300 m a.s.l.),the hillside(150 m a.s.l.),and the foot of the hill(0 m a.s.l.).The results showed that edaphic properties differed significantly with elevation.Bacterial community composition,rather than alpha diversity,strongly differed among the three elevations(Adonis:R2=0.12,P<0.01).Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH,elevation,total nitrogen(TN),and dissolved organic carbon(DOC).The degree scores,betweenness centralities,and composition of keystone species were distinct among the elevations.These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain.Soil pH and elevation together drove the smallscale elevational distribution of soil bacterial communities.This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients.
基金Supported by the Public Science and Technology Research Funds Projects of Ocean(No.201305030)the National Natural Science Foundation of China(No.41276137)the China Agriculture Research System(No.CARS-50)
文摘The community dynamics and potential carbon ?xation of intertidal macroalgae were investigated monthly from April 2014 to April 2015 in the northwest coast of Yellow Sea. Seasonal variations in biomass and carbon ?xation were presented and showed close relationship with community structure.The carbon ?xation rate ranged from 0.48±0.13 mg C/(g FW ·d) to 4.35±0.12 mg C/(g FW ·d). Sargassum thunbergii, Chondrus ocellatus and Ulva intestinalis were three most in?uential species which contributed27%, 21.9% and 18.5% variation of carbon ?xation rate, respectively. Standing carbon stocks ranged from7.52 g C/m^2 to 41.31 g C/m^2, and estimated carbon stocks varied from 11.77 g C/m 2 to 96.49 g C/m^2. The larger dif ference between estimated and standing carbon stocks implied that more ?xed carbon was exported from the community in summer and autumn than in winter. This study suggested that intertidal macroalgal community could provide a potential function in carbon ?xation of coastal ecosystem.
基金Supported by the Curtin-BHP alliance within the framework of the“eDNA for Global Environment Studies(eDGES)”program。
文摘Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon sink storage and extractive resource reservoirs.Despite their importance,effective ecological assessment is in its infancy compared to current conventional surveys carried out in freshwater ecosystems.The integration of environmental DNA(eDNA)analysis and traditional techniques has the potential to transform biomonitoring processes,particularly in remote and understudied saline environments.In this context,this preliminary study aims to explore the potential of eDNA coupled with conventional approaches by targeting five hypersaline lakes at Rottnest Island(Wadjemup)in Western Australia.We focused on the invertebrate community,a widely accepted key ecological indicator to assess the conservational status in rivers and lakes.The combination of metabarcoding with morphology-based taxonomic analysis described 16 taxa belonging to the orders Anostraca,Diptera,Isopoda,and Coleoptera.DNA-based diversity assessment revealed more taxa at higher taxonomic resolution than the morphology-based taxonomic analysis.However,certain taxa(i.e.,Ephydridae,Stratyiomidae,Ceratopogonidae)were only identified via net surveying.Overall,our results indicate that great potential resides in combining conventional net-based surveys with novel eDNA approaches in saline and hypersaline lakes.Indeed,urgent and effective conservational frameworks are required to contrast the enormous pressure that these ecosystems are increasingly facing.Further investigations at larger spatial temporal scales will allow consolidation of robust,reliable,and affordable biomonitoring frameworks in the underexplored world of saline wetlands.
基金supported by the National Natural Science Foundation of China (41761043, 41201196)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University, China (NWNU-LKQN2020-06, NWNU-LKQN-17-7)the Key Research and Development Program of Gansu Province, China (20YF3FA042)
文摘Variations of precipitation have great impacts on soil carbon cycle and decomposition of soil organic matter.Soil bacteria are crucial participants in regulating these ecological processes and vulnerable to altered precipitation.Studying the impacts of altered precipitation on soil bacterial community structure can provide a novel insight into the potential impacts of altered precipitation on soil carbon cycle and carbon storage of grassland.Therefore,soil bacterial community structure under a precipitation manipulation experiment was researched in a semi-arid desert grassland in Chinese Loess Plateau.Five precipitation levels,i.e.,control,reduced and increased precipitation by 40%and 20%,respectively(referred here as CK,DP40,DP20,IP40,and IP20)were set.The results showed that soil bacterial alpha diversity and rare bacteria significantly changed with altered precipitation,but the dominant bacteria and soil bacterial beta diversity did not change,which may be ascribed to the ecological strategy of soil bacteria.The linear discriminate analysis(LDA)effect size(LEfSe)method found that major response patterns of soil bacteria to altered precipitation were resource-limited and drought-tolerant populations.In addition,increasing precipitation greatly promoted inter-species competition,while decreasing precipitation highly facilitated inter-species cooperation.These changes in species interaction can promote different distribution ratios of bacterial populations under different precipitation conditions.In structural equation model(SEM)analysis,with changes in precipitation,plant growth characteristics were found to be drivers of soil bacterial community composition,while soil properties were not.In conclusion,our results indicated that in desert grassland ecosystem,the sensitive of soil rare bacteria to altered precipitation was stronger than that of dominant taxa,which may be related to the ecological strategy of bacteria,species interaction,and precipitation-induced variations of plant growth characteristics.
基金Supported by Jiangxi Natural Science Fund Program(2009GQN0068)~~
文摘[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by the chloroform fumigation extraction method;the microbial community composition and Nitrogen cycling microbial functional groups were investigated by the Dilution plate culture method and the most probable number methods respectively.[Result] The microbial biomass carbon and nitrogen,in rhizosphere soil of Dongxiang Wild Rice was 83.02±18.23 mg/kg soil and 16.98±2.54 mg/kg soil,which was lower than that of ordinary cultivated rice;The relationship between the number of culturable microbial groups was bacteriaactinomycetesfungi,and the Nitrogen cycling microbial physiological groups was as the following:ammonifying bacteriaaerobic azotobacteriadenitrobacteriaanaerobic azotobacterianitrobacterianitrosobacteria.[Conclusion] The microbial community in the rhizosphere soil of Dongxiang Wild Rice was different from that of the ordinary cultivated rice.
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
基金Supported by the National Natural Science Foundation of China(No.51178090)the National Key Technology R&D Program of China(No.2012BAJ21B02-02)the National Water Pollution Control and Management Technology Major Projects(No.2009ZX07106-001)
文摘To explore the spatial heterogeneity of plankton communities in a deep artificial lake (Songhua Lake, China), samples were collected at seven sites. Samples were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of the PCR-amplified 16S and 18S rRNA genes and specific bands were sequenced. Cluster analysis of the DGGE profiles revealed that all of the samples grouped into two distinct clusters, in accordance with sampling site; while in each cluster, the divergence of sub-clusters correlated with sampling depth. Sequence analysis of selected dominant DGGE bands revealed that most sequenced phylotypes (84%) exhibited 〉97% similarity to the closest sequences in GenBank, and were affiliated with ten common freshwater plankton phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Bacillariophyta, Pyrrophyta, Cryptophyta, Ciliophora, Stramenopiles, and Rotifera). Several of these groups are also found worldwide, indicating the cosmopolitan distribution of the phylotypes. The relationships between DGGE patterns and environmental factors were analyzed by redundancy analysis (RDA). The results suggested that, total nitrogen, nitrate, nitrite, temperature were strongly correlated with the variation ammonia, and CODMn concentrations, and water in plankton composition.
文摘Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community composition,structure,diversity as well as function.In this study,the bacterial community composition and diversity of a series of soils treated by autoclaving,which coming from the same original soil sample and showing gradient fungistasis to the target soil-borne pathogen fungi Fusarium grami...
基金China Ocean Mineral Resources Research and Development Association Program under contract No.DY125-14-E-01the Global Change and Air-Sea Interaction Program under contract No.GASI-03-01-03-02+2 种基金the National Natural Science Foundation of China under contract No.41406116the Marine Public Welfare Project of China Program under contract No.201005015the Project of the Chinese Offshore Investigation and Assessment Program under contract Nos 908-ST04-Ⅰand 908-ST04-Ⅱ
文摘A quarterly study of mesozooplankton community structure and environmental variables in the Hangzhou Bay was conducted to examine the response of mesozooplankton community to the variation of water mass and environmental condition. The southeast coast of China is a typical region under the intensive influence of Asia monsoon and freshwater discharge from rivers. The water mass and environmental condition of the Hangzhou Bay, which were influenced by the interaction of currents, freshwater discharge of the Qiantang River and Changjiang River Plume, showed significant seasonal variation. Our results showed that both biomass and abundance were significantly higher in summer((247.7±148.8) mg/m^3 and(350.9±215.6) ind./m^3, respectively)than those in other seasons. Four eco-geographical regions were divided based on the cluster analysis of zooplankton community of the Hangzhou Bay throughout the year, except for winter. Monsoon and the dissolved inorganic nitrogen(DIN) input from freshwater discharge of the Qiantang River and Changjiang River resulted in temporal and spatial variations of environmental gradient in the Hangzhou Bay, which significantly influenced the structure of mesozooplankton community. Redundancy analysis(RDA) indicated that the mesozooplankton community structure was strictly correlated with the DIN gradient, while salinity gradient showed a weak influence in the Hangzhou Bay.