We present a novel four-mirror cavity with two active gains to combine power intracavity and also give a detailed theoretical analysis of the combined gain. By using the effective field method, the four-mirror cavity ...We present a novel four-mirror cavity with two active gains to combine power intracavity and also give a detailed theoretical analysis of the combined gain. By using the effective field method, the four-mirror cavity with two gain media can be regarded as a linear resonator with one effective combined gain (ECG), and we procure a theoretical model of the ECG and deduce its exact analytical expression. When the two branch gains are close to each other; the combined gain can be reduced to their product; and the simplified presentation of ECG has been demonstrated. The combined output power which directly reflects the small signal ECG of the four-mirror cavity is studied experimentally; and the results are in good agreement with the theoretical ones.展开更多
A composite accelerating cavity utilizing a resonant, periodic structure with a dielectric sphere located at a spherical conducting cavity center is presented. The resonator design is of the whispering gallery type to...A composite accelerating cavity utilizing a resonant, periodic structure with a dielectric sphere located at a spherical conducting cavity center is presented. The resonator design is of the whispering gallery type to take advantage of the excellent electromagnetic field confinement offered by this geometry. The maximum electromagnetic fields of this structure exceed by several orders of magnitude the values reached in resonant cavities of typical linear accelerators. And the skin current losses are reduced without engaging superconductivity and cryogenic systems for this new construction. Especially because all field components at the metallic wall are either zero or very small in this proposed spherical cavity, one can expect the cavity to be less prone to electrical breakdowns than the traditional cavity. In this paper, the new type of accelerating structure was analyzed and calculated. The results are in very well agreement with the corresponding values simulated by CST. And for the existing ultra-low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.展开更多
文摘We present a novel four-mirror cavity with two active gains to combine power intracavity and also give a detailed theoretical analysis of the combined gain. By using the effective field method, the four-mirror cavity with two gain media can be regarded as a linear resonator with one effective combined gain (ECG), and we procure a theoretical model of the ECG and deduce its exact analytical expression. When the two branch gains are close to each other; the combined gain can be reduced to their product; and the simplified presentation of ECG has been demonstrated. The combined output power which directly reflects the small signal ECG of the four-mirror cavity is studied experimentally; and the results are in good agreement with the theoretical ones.
文摘A composite accelerating cavity utilizing a resonant, periodic structure with a dielectric sphere located at a spherical conducting cavity center is presented. The resonator design is of the whispering gallery type to take advantage of the excellent electromagnetic field confinement offered by this geometry. The maximum electromagnetic fields of this structure exceed by several orders of magnitude the values reached in resonant cavities of typical linear accelerators. And the skin current losses are reduced without engaging superconductivity and cryogenic systems for this new construction. Especially because all field components at the metallic wall are either zero or very small in this proposed spherical cavity, one can expect the cavity to be less prone to electrical breakdowns than the traditional cavity. In this paper, the new type of accelerating structure was analyzed and calculated. The results are in very well agreement with the corresponding values simulated by CST. And for the existing ultra-low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.