期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Deformation characteristics and damage ontologies of soft and hard composite rock masses under impact loading
1
作者 LI Jinhua ZHANG Tianyu +3 位作者 WU Baolin SU Peili YANG Yang WANG Pan 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1715-1727,共13页
As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ... As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load. 展开更多
关键词 Soft and hard composite rock mass Dynamic properties Split Hopkinson pressure bar(SHPB) Numerical simulation Intrinsic damage model
下载PDF
Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression 被引量:5
2
作者 Hongjian Lu Yiren Wang +2 位作者 Deqing Gan Jie Wu Xiaojun Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期802-812,共11页
To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite ... To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS. 展开更多
关键词 backfill–rock composite structure triaxial compression mechanical behavior acoustic emission numerical simulation
下载PDF
Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation(DIC) 被引量:17
3
作者 Jian-Long Cheng Sheng-Qi Yang +3 位作者 Kui Chen Dan Ma Feng-Yuan Li Li-Ming Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第6期999-1021,共23页
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic ... In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface. 展开更多
关键词 Uniaxial compression tests on composite rock ANISOTROPY Elastic constant Failure mode 3D digital image correlation Acoustic emission Strain field
下载PDF
Theoretical and numerical study on reinforcing effect of rock-bolt through composite soft rock-mass 被引量:6
4
作者 ZHAO Zeng-hui GAO Xiao-jie +1 位作者 TAN Yun-liang MA Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2512-2522,共11页
Anchoring mechanism and failure characteristics of composite soft rock with weak interface usually exhibit remarkable difference from those in single rock mass.In order to fully understand the reinforcement mechanism ... Anchoring mechanism and failure characteristics of composite soft rock with weak interface usually exhibit remarkable difference from those in single rock mass.In order to fully understand the reinforcement mechanism of composite soft roof in western mining area of China,a mechanical model of composite soft rock with weak interface and rock bolt which considering the transverse shear sliding between different rock layers was established firstly.The anchoring effect was quantified by a factor defined as anchoring effect coefficient and its evolution equation was further deduced based on the deformation relationship and homogenized distribution assumption of stress acting on composite structure.Meanwhile,the numerical simulation model of composite soft rock with shear joint was prompted by finite element method.Then detailed analysis were carried out for the deformation features,stress distribution and failure behavior of rock mass and rock bolt near the joint under transverse load.The theoretical result indicates that the anchoring effect of rock-bolt through weak joint changes with the working status of rock mass and closely relates with the physical and geometric parameters of rock mass and rock bolt.From the numerical results,the bending deformation of rock bolt accurately characterized by Doseresp model is mainly concentrated between two plastic hinges near the shear joint.The maximum tensile and compression stresses distribute in the plastic hinge.However,the maximum shear stress appears at the positions of joint surface.The failure zones of composite rock are produced firstly at the joint surface due to the reaction of rock bolt.The above results laid a theoretical and computational foundation for further study of anchorage failure in composite soft rock. 展开更多
关键词 composite soft rock ANCHORAGE evolution equation numerical model plastic hinge
下载PDF
Monitoring and analysis of nonlinear dynamic damage of transport roadway supported by composite hard rock materials in Linglong Gold Mine 被引量:9
5
作者 MeifengCai XingpingLai 《Journal of University of Science and Technology Beijing》 CSCD 2003年第2期10-15,共6页
The study concentrates mainly on the development of failure process incomposite rock mass. By use of acoustic emission (AE), convergence inspection, pressure monitoring,level measurement techniques and the modem signa... The study concentrates mainly on the development of failure process incomposite rock mass. By use of acoustic emission (AE), convergence inspection, pressure monitoring,level measurement techniques and the modem signal analysis technology, as well as scan electronmicroscopy (SEM) experiment, various aspects of nonlinear dynamic damage of composite rock masssurrounding the transport roadway in Linglong gold mine are discussed. According to the monitoringresults, the stability of the rock mass can be synthetically evaluated, and the intrinsic relationbetween the damage and the characteristic parameters of acoustic emission can be determined. Thelocation of the damage of rock mass can also be detected based on the acoustic emission couplemonitoring signals. Finally, the key factors which influence the stability of the transport roadwaysupported by composite hard rock materials are found out. 展开更多
关键词 monitoring and analysis dynamic damage composite hard rock mass transport roadway Linglong gold mine
下载PDF
Thermal Effects on Composition of Rearranged Hopanes in Hydrocarbon Source Rocks 被引量:1
6
作者 ZHANG Min CHEN Julin JIANG Lian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期373-374,共2页
Objective The distribution characteristics and formation mechanism of rearranged hopanes in hydrocarbon source rocks are affected by various geological conditions.Among these geological conditions,thermal action has a... Objective The distribution characteristics and formation mechanism of rearranged hopanes in hydrocarbon source rocks are affected by various geological conditions.Among these geological conditions,thermal action has an important influence on the formation of rearranged hopanes,which has been however little documented previously. 展开更多
关键词 Thermal Effects on Composition of Rearranged Hopanes in Hydrocarbon Source rocks SOURCE
下载PDF
Engineering study on roadway support in high-stress composite soft rock
7
作者 贾明魁 程东泉 《Journal of Coal Science & Engineering(China)》 2003年第1期42-46,共5页
The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rhe... The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rheological deformation. Furthermore, on the basis of analyzing physico chemical component of surrounding rock and the situation of the damaged roadway, the method of adopting strong bolting and shotcreting mesh for the primary support, bolting and grouting for the secondary support is put forward in light of the on the spot investigation of stress tension, mechanical parameter and engineering geology. The application reveals the method facilitates the continuation of west main roadway and the restoration of shaft station and chambers. Consequently, better techno economic results have been achieved. 展开更多
关键词 high stress composite soft rock ROADWAY strong force bolting and shotcreting mesh bolting and grouting
下载PDF
Understanding of mineral change mechanisms in coal mine groundwater reservoir and their influences on effluent water quality:a experimental study 被引量:4
8
作者 Kai Zhang Huifang Li +2 位作者 Jiaming Han Binbin Jiang Ju Gao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期154-167,共14页
This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reser... This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reservoir of Daliuta Coal Mine is taken as the research object.Simulation experiments were designed and conducted to simulate water–rock action in the laboratory.The mineral composition was analyzed by X-ray diffractometer(XRD),the surface morphology of the mineral was analyzed by scanning electron microscope(SEM),and the specific surface area,total pore volume and average pore diameter of the mineral were measured by fast specific surface/pore analyzer(BET).The experimental results show that the sandstone and mudstone in the groundwater reservoir of Daliuta Coal Mine account for 70%and 30%,respectively.The pore diameter is 15.62–17.55 nm,and pore volume is 0.035 cc/g.Its pore structure is a key factor in the occurrence of water–rock interaction.According to the water–rock simulation experiment,the quartz content before the water–rock action is about 34.28%,the albite is about 21.84%,the feldspar is about 17.48%,and the kaolinite is about 8.00%.After the water–rock action,they are 36.14%,17.78%,11.62%,and 16.75%,respectively.The content of albite and orthoclase is reduced while the content of kaolinite is increased,that is,the Na+content becomes higher,and the Ca2+and Mg2+contents become lower.This research builds a good theoretical foundation for revealing the role of water and rock in underground coal reservoirs. 展开更多
关键词 Coal mine underground reservoir Fallen rock Water-rock interaction Rock composition
下载PDF
Crack evolution of soft–hard composite layered rock-like specimens with two fissures under uniaxial compression 被引量:2
9
作者 Dong ZHOU Yicheng YE +2 位作者 Nanyan HU Weiqi WANG Xianhua WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第6期1372-1389,共18页
Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures und... Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures under uniaxial compression.The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed.The characteristics of the acoustic emission source location distribution,and frequency changes of the crack evolution process were also investigated.The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures.Hard layers predominantly produce tensile cracks;soft layers produce shear cracks.The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers.The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics,and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability.This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines,as well as in roadway layout and support. 展开更多
关键词 soft−hard composite layered rock mass double cracks crack evolution acoustic emission digital image correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部