The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a...The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.展开更多
Combining theoretical and experimental modal analyses on self-excited vibration induced by dry friction between two elastic structures, we can explain the high-order sell-excited vibration phenomenon in which water dr...Combining theoretical and experimental modal analyses on self-excited vibration induced by dry friction between two elastic structures, we can explain the high-order sell-excited vibration phenomenon in which water droplets spurt from fourteen or twelve areas of the Chinese culture relic dragon washbasin when it is rubbed with hands, and clarify the mechanism of the singular high-order self-excited vibration. The experimental modes and the practical measured results are presented for a special dragon washbasin. The theoretical results agree well with the experimental ones.展开更多
This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, d...This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.展开更多
The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the...The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.展开更多
The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related w...The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related with damping of driveline, the variation of friction coefficient, equiva- lent radius of friction plate and applied force of pressure plate. Six DOFs torsional vibration model of vehicle driveline was established according to the parameters of the certain compact car. The simula- tion was carried out and the result was compared with test data. It was found that the negative slope of friction coefficient with relative slip speed does not necessarily lead to self-excited vibration and the frequency of self-excited vibration on 1st gear is near to the 1st order of torsional natural frequen- cy. The influence of each viscous damping in driveline on self-excited vibration was analyzed by sim- ulation and the results showed that increasing the torsional dampings of half-axles and tires properly was effective to improve launch shudder phenomenon.展开更多
This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model ...This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.展开更多
A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the...A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks.展开更多
Based on our previous work, a mathematical model of piecewise-smooth systems is established by means of phase-plane orbit analysis, and it is then used to study the intersting phenomena of Chinese cultural relic Drago...Based on our previous work, a mathematical model of piecewise-smooth systems is established by means of phase-plane orbit analysis, and it is then used to study the intersting phenomena of Chinese cultural relic Dragon Washbasin. The mechanism of nonlinear damping is analyzed; the approximate analytical solution of self-excited vibration of piecewise-smooth nonlinear systems induced by dry friction is derived by means of KB Method, the results of which agree well with that of the numerical solution. Therefore, the method presented in this paper is proved to be very efficient in analyzing the self-excited vibration of piecewise-smooth systems induced by dry friction.展开更多
Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an...Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an example. Some new characteristics of the self-excited vibration in this kind of system are found. The conditions under which self-excited vibration occurs at low-order or high-order modes are discussed. Effects of changes in parameters of the system on the self-excited vibration are analyzed. The vibration mechanism of the water droplets spurting phenomenon of the Chinese cultural relic dragon washbasin is further explained. This investigation presents a new idea for modeling the self-excited vibration caused by dry friction interaction between two elastic structures.展开更多
The vibration behavior and the synchronization between some internal points of four coupled self-excited beams are numerically studied. Coupling through the root of the beams is considered. The transverse displacement...The vibration behavior and the synchronization between some internal points of four coupled self-excited beams are numerically studied. Coupling through the root of the beams is considered. The transverse displacements of the internal points and the beam tips are monitored, and the power spectra of the resulting time series are employed to determine the oscillation frequencies. The synchronization between beams is analyzed using phase portraits and correlation coefficients. Numerical results show multiple frequencies in the vibration pattern, and complex patterns of synchronization between pairs of beams.展开更多
It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles...It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles mainly focus on droplet breakup and single droplet characteristics. Research relating to the influences of structural parameters on the droplet diameter characteristics in the flow field is scarcely available. In this paper, the influence of a self-excited vibrating cavity structure on droplet diameter characteristics was investigated. Twin-fluid atomizing tests were performed by a self-built open atomizing test bench, which was based on a phase Doppler particle analyzer(PDPA). The atomizing flow field of the twin-fluid nozzle with a self-excited vibrating cavity and its absence were tested and analyzed. Then the atomizing flow field of the twin-fluid nozzle with different self-excited vibrating cavity structures was investigated.The experimental results show that the structural parameters of the self-excited vibrating cavity had a great effect on the breakup of large droplets. The Sauter mean diameter(SMD) increased with the increase of orifice diameter or orifice depth. Moreover, a smaller orifice diameter or orifice depth was beneficial to enhancing the turbulence around the outlet of nozzle and decreasing the SMD. The atomizing performance was better when the orifice diameter was2.0 mm or the orifice depth was 1.5 mm. Furthermore, the SMD increased first and then decreased with the increase of the distance between the nozzle outlet and self-excited vibrating cavity, and the SMD of more than half the atomizing flow field was under 35 μm when the distance was 5.0 mm. In addition, with the increase of axial and radial distance from the nozzle outlet, the SMD and arithmetic mean diameter(AMD) tend to increase. The research results provide some design parameters for the twin-fluid nozzle, and the experimental results could serve as a beneficial supplement to the twin-fluid nozzle study.展开更多
The internal friction of floating spline can cause self-excited vibration of a supercritical flexible rotor system.To address this issue,a high-efficiency dynamic modeling method is proposed to investigate the self-ex...The internal friction of floating spline can cause self-excited vibration of a supercritical flexible rotor system.To address this issue,a high-efficiency dynamic modeling method is proposed to investigate the self-excited vibration behavior and instability evolution of the rotor.Experiments are conducted to validate the theoretical results.The coupled dynamic equations for the rotor system connected with the floating spline are derived through the combination of finite element method and lumped parameter model.A hybrid numerical approach of precise integration and Runge-Kutta method is adopted to examine the effects of the friction coefficient of spline’s tooth surface,torque,and eccentricity on the self-excited vibration of the rotor system.The results show that the spline friction leads to negative damping and inputs energy into the rotor system under supercritical conditions,triggering self-excited vibration when the input energy exceeds a specific level.With the same parameters,the experimentally obtained axial trajectory and primary frequency components are consistent with the theoretical results,verifying the accuracy of the proposed theoretical model.This study can serve as a useful theoretical guide for the dynamic stability design of flexible rotor systems with the floating spline.展开更多
Cavity flow oscillations in the axisymmetric cavity are critical to the operating efficiency of self-excited pulsed waterjets,which are widely employed in many practical applications.In this study,the behaviors of a t...Cavity flow oscillations in the axisymmetric cavity are critical to the operating efficiency of self-excited pulsed waterjets,which are widely employed in many practical applications.In this study,the behaviors of a turbulent flow in axisymmetric cavities causing cavity flow oscillations are investigated based on wall pressure characteristics.Experiments are performed using four Helmholtz nozzles with varying length-to-radius ratios at flow velocities of 20–80 m/s.Three orders of hydrodynamic modes in axisymmetric cavity are obtained through the spectral analysis of wall pressure.Based on the experimental results,the empirical coefficient of Rossiter’s formula is modified,and the values of the parameter phase lag and the ratio of convection velocity to free stream velocity are obtained as 0.061 and 0.511,respectively.In addition,the spectral peak with a relatively constant frequency shows that the flow-acoustic resonance is excited significantly.A modified model is introduced based on the fluidic networks to predict the lockon frequency.The results obtained can provide a basis for the structural optimization of the nozzle to improve the performance of self-excited pulsed waterjets.展开更多
The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation press...The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation pressure.The resonance point of this system varies with the vibration state due to its nonlinearity and the change in equilibrium state.To deal with this,a state feedback control law that automatically tracks the resonance point is developed in the present study.The proposed method enables decentralized control of the actuators on the sail,each of which determines the control input independently using only the information of vibration state.The proposed method is validated using numerical simulations.The results show that the nonlinear system behaves differently from the linear system,and the vibration grows using the decentralized control regardless of resonance point variation.展开更多
Dynamic modeling was carried on by combining the dynamic of machinery with composite triology, and the critical condition in which the ways would not produce composite-friction self-excited vibration was obtained. The...Dynamic modeling was carried on by combining the dynamic of machinery with composite triology, and the critical condition in which the ways would not produce composite-friction self-excited vibration was obtained. The movement regularity and characteristic of the airflow in exhaust gas slit were analyzed, and the relationship between pressure lost and geometry parameters of exhaust gas slit was obtained. A dynamic model and a mathematical model were established for pneumatic half-floating slide ways by combining the dynamics of machinery with hydrokinetics. The objective function for the optimization of slide ways was established based on the fuzzy optimization theory. The membership function of fuzzy constraint was deduced, the fuzzy constraint limit was established by amplification coefficient method, and the optimal value was resolved by the multilevel fuzzy comprehensive evaluation method. By combining the internal penalty function method with the variable metric method, the fuzzy optimization design program of ways was designed based on the Matlab platform. The validation was carried on by an example, and ideal results of fuzzy optimization design of slide ways were obtained.展开更多
A novel extended methodology for chatter suppression in milling process by applying external forced vibrations to the workpiece in two orthogonal directions which are the feed and cross-feed directions.Both the regene...A novel extended methodology for chatter suppression in milling process by applying external forced vibrations to the workpiece in two orthogonal directions which are the feed and cross-feed directions.Both the regenerative and forced chatter suppression during the milling process of flexible workpieces are investigated.Here,the workpiece is subject to a sinusoidal periodic force in the feed direction to disrupt the regenerative effect.Additionally,to minimize the forced chatter,the workpiece is subject to the periodic excitation force in cross-feed direction.This force is proportional to the magnitude of the estimated cutting force in cross-feed direction and has a phase opposite to the cutting force to minimize the vibration amplitudes.The effectiveness of the proposed method is evaluated numerically and experimentally,for the spindle speed located in both the local minima and local maxima of the stability lobe diagram.The numerical simulations indicate significant suppression effect in terms of vibration amplitudes,resulting in suppression of both the regenerative chatter and the forced chatter.Experiments were conducted by using a workpiece-mounted active stage composed of flexure hinges and driven by piezoelectric actuators.The experimental results agree qualitatively with the numerical simulations.The proposed method indicates a remarkable vibration reduction effect for both regenerative and forced chatters.展开更多
Based on phase-plane orbit analysis, the mathematical model of piecewise-smooth systems of multi-degree-of-freedom under the mode coordinate is established. Approximate analytical solution under the physical coordinat...Based on phase-plane orbit analysis, the mathematical model of piecewise-smooth systems of multi-degree-of-freedom under the mode coordinate is established. Approximate analytical solution under the physical coordinate of multi-degree-of-freedom self-excited vibration induced by dry friction of piecewise-smooth nonlinear systems is derived by means of average method, the results of which agree with those of the numerical solution. An effective and reliable analytical method investigating piecewise-smooth nonlinear systems of multi-degree-of-freedom has been given. Furthermore, this paper qualitatively analyses the curves about stationary amplitude versus rubbing velocity of hands and versus natural frequency of hands, and about angular frequency versus rubbing velocity of hands. The results provide a theoretical basis for identifying parameters of the system and the analysis of steady region.展开更多
A newly found phenomenon of carved driving wheels of a rear-wheel-drive tractor used in an airport is discussed. The circum of every driving wheel is damaged at three regions, which distribute regularly and uniformly....A newly found phenomenon of carved driving wheels of a rear-wheel-drive tractor used in an airport is discussed. The circum of every driving wheel is damaged at three regions, which distribute regularly and uniformly. Everyday, the tractor tows a trailer which are times heavier than the tractor, and moves on the same road in the airport. The phenomenon is explained by the torsional self-excited vibration system of the powertrain. The simplified torsional vibration system is discribed by a 2-order ordinary differential equation, which has a limit circle. Experiments and numerical simulations show the followings: Because of the heavy trailer, the slip ratio of the tractor's driving wheels is very large. Therefore, there is severe torsional self-excited vibration in the tractor's drivetrain, and the self-excited vibration results in severe and regular fluctuations of the rear wheel's velocity. The severe fluctuations in velocity fastens the damage of the driving wheels. At the same time, the time interval in which an arbitrary point in the circum of the driving wheel contacts with the road twice is two times more than the period of the torsional self-excited vibration, and this times explained the existence of three damaged regions. At last, it points out that the phenomenon can be avoided when the torsional damping is large enough.展开更多
Polygonal wear seriously decreases the lifespan of a tire of a passenger car and adversely affects vehicle dynamic safety.The present paper builds a model that reflects the dynamic contact characteristics of the tire ...Polygonal wear seriously decreases the lifespan of a tire of a passenger car and adversely affects vehicle dynamic safety.The present paper builds a model that reflects the dynamic contact characteristics of the tire and reveals the mechanism and conditions of polygonal wear of a tire.The model describes the dynamic contact behavior of the tread block and considers the characteristics of dynamic friction between the road and tread of a rolling tire.Conducting numerical bifurcation analysis,the paper reveals the conditions for self-excited vibration of the tread,i.e.,the improper combination of the vertical load,wheel slip angle,tire pressure and vehicle speed considerably strengthen the lateral self-excited vibration of the tread,which is the direct vibrational source of abnormal circumferential polygonal wear.The polygonal wear of a tire occurs when a vehicle travels for a certain long distance at a so-called polygonal wear speed.The polygonal wear speed should induce lateral self-excited vibration on the contact tread of the tire and the frequency of the lateral self-excited vibration should be divisible by the rolling frequency of tire that is determined by the polygonal wear speed.Visible polygonal wear requires that the vehicle travels at a certain polygonal wear speed for a minimal distance to produce a stably developing polygonal wear pattern even for subsequent driving at variable speed.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12372005)。
文摘The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.
基金The project supported by the National Natural Science Foundation of China (19872003)
文摘Combining theoretical and experimental modal analyses on self-excited vibration induced by dry friction between two elastic structures, we can explain the high-order sell-excited vibration phenomenon in which water droplets spurt from fourteen or twelve areas of the Chinese culture relic dragon washbasin when it is rubbed with hands, and clarify the mechanism of the singular high-order self-excited vibration. The experimental modes and the practical measured results are presented for a special dragon washbasin. The theoretical results agree well with the experimental ones.
基金Projects(11302252,11202230)supported by the National Natural Science Foundation of China
文摘This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.
基金Supported by the National Natural Science Foundation of China(51175379)
文摘The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related with damping of driveline, the variation of friction coefficient, equiva- lent radius of friction plate and applied force of pressure plate. Six DOFs torsional vibration model of vehicle driveline was established according to the parameters of the certain compact car. The simula- tion was carried out and the result was compared with test data. It was found that the negative slope of friction coefficient with relative slip speed does not necessarily lead to self-excited vibration and the frequency of self-excited vibration on 1st gear is near to the 1st order of torsional natural frequen- cy. The influence of each viscous damping in driveline on self-excited vibration was analyzed by sim- ulation and the results showed that increasing the torsional dampings of half-axles and tires properly was effective to improve launch shudder phenomenon.
基金Projects(11302252,11202230) supported by the National Natural Science Foundation of China
文摘This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.
基金supported by the National Natural Science Foundation of China(No.51275429)
文摘A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks.
文摘Based on our previous work, a mathematical model of piecewise-smooth systems is established by means of phase-plane orbit analysis, and it is then used to study the intersting phenomena of Chinese cultural relic Dragon Washbasin. The mechanism of nonlinear damping is analyzed; the approximate analytical solution of self-excited vibration of piecewise-smooth nonlinear systems induced by dry friction is derived by means of KB Method, the results of which agree well with that of the numerical solution. Therefore, the method presented in this paper is proved to be very efficient in analyzing the self-excited vibration of piecewise-smooth systems induced by dry friction.
基金The project supported by the National Natural Science Foundation of China
文摘Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an example. Some new characteristics of the self-excited vibration in this kind of system are found. The conditions under which self-excited vibration occurs at low-order or high-order modes are discussed. Effects of changes in parameters of the system on the self-excited vibration are analyzed. The vibration mechanism of the water droplets spurting phenomenon of the Chinese cultural relic dragon washbasin is further explained. This investigation presents a new idea for modeling the self-excited vibration caused by dry friction interaction between two elastic structures.
文摘The vibration behavior and the synchronization between some internal points of four coupled self-excited beams are numerically studied. Coupling through the root of the beams is considered. The transverse displacements of the internal points and the beam tips are monitored, and the power spectra of the resulting time series are employed to determine the oscillation frequencies. The synchronization between beams is analyzed using phase portraits and correlation coefficients. Numerical results show multiple frequencies in the vibration pattern, and complex patterns of synchronization between pairs of beams.
基金Supported by National Natural Science Foundation of China(Grant No.51705445)Hebei Provincial Natural Science Foundation of China,(Grant No.E2016203324)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China(Grant No.GZKF-201714)
文摘It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles mainly focus on droplet breakup and single droplet characteristics. Research relating to the influences of structural parameters on the droplet diameter characteristics in the flow field is scarcely available. In this paper, the influence of a self-excited vibrating cavity structure on droplet diameter characteristics was investigated. Twin-fluid atomizing tests were performed by a self-built open atomizing test bench, which was based on a phase Doppler particle analyzer(PDPA). The atomizing flow field of the twin-fluid nozzle with a self-excited vibrating cavity and its absence were tested and analyzed. Then the atomizing flow field of the twin-fluid nozzle with different self-excited vibrating cavity structures was investigated.The experimental results show that the structural parameters of the self-excited vibrating cavity had a great effect on the breakup of large droplets. The Sauter mean diameter(SMD) increased with the increase of orifice diameter or orifice depth. Moreover, a smaller orifice diameter or orifice depth was beneficial to enhancing the turbulence around the outlet of nozzle and decreasing the SMD. The atomizing performance was better when the orifice diameter was2.0 mm or the orifice depth was 1.5 mm. Furthermore, the SMD increased first and then decreased with the increase of the distance between the nozzle outlet and self-excited vibrating cavity, and the SMD of more than half the atomizing flow field was under 35 μm when the distance was 5.0 mm. In addition, with the increase of axial and radial distance from the nozzle outlet, the SMD and arithmetic mean diameter(AMD) tend to increase. The research results provide some design parameters for the twin-fluid nozzle, and the experimental results could serve as a beneficial supplement to the twin-fluid nozzle study.
基金supported by the National Natural Science Foundation of China,China(No.52005253)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China,China(No.22KJB130004)+2 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20200426)the Postdoctoral Science Foundation of Jiangsu Province,China(No.2021K075A)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G08)。
文摘The internal friction of floating spline can cause self-excited vibration of a supercritical flexible rotor system.To address this issue,a high-efficiency dynamic modeling method is proposed to investigate the self-excited vibration behavior and instability evolution of the rotor.Experiments are conducted to validate the theoretical results.The coupled dynamic equations for the rotor system connected with the floating spline are derived through the combination of finite element method and lumped parameter model.A hybrid numerical approach of precise integration and Runge-Kutta method is adopted to examine the effects of the friction coefficient of spline’s tooth surface,torque,and eccentricity on the self-excited vibration of the rotor system.The results show that the spline friction leads to negative damping and inputs energy into the rotor system under supercritical conditions,triggering self-excited vibration when the input energy exceeds a specific level.With the same parameters,the experimentally obtained axial trajectory and primary frequency components are consistent with the theoretical results,verifying the accuracy of the proposed theoretical model.This study can serve as a useful theoretical guide for the dynamic stability design of flexible rotor systems with the floating spline.
基金National Natural Science Foundation of China(Grant Nos.52175245,51805188)Fundamental Research Funds for the Central Universities of China(Grant No.2042020kf0001)National Key Research and Development Program of China(Grant No.2018YFC0808401).
文摘Cavity flow oscillations in the axisymmetric cavity are critical to the operating efficiency of self-excited pulsed waterjets,which are widely employed in many practical applications.In this study,the behaviors of a turbulent flow in axisymmetric cavities causing cavity flow oscillations are investigated based on wall pressure characteristics.Experiments are performed using four Helmholtz nozzles with varying length-to-radius ratios at flow velocities of 20–80 m/s.Three orders of hydrodynamic modes in axisymmetric cavity are obtained through the spectral analysis of wall pressure.Based on the experimental results,the empirical coefficient of Rossiter’s formula is modified,and the values of the parameter phase lag and the ratio of convection velocity to free stream velocity are obtained as 0.061 and 0.511,respectively.In addition,the spectral peak with a relatively constant frequency shows that the flow-acoustic resonance is excited significantly.A modified model is introduced based on the fluidic networks to predict the lockon frequency.The results obtained can provide a basis for the structural optimization of the nozzle to improve the performance of self-excited pulsed waterjets.
基金The present study was supported by JSPS KAKENHI Grant Number JP18J11615.
文摘The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation pressure.The resonance point of this system varies with the vibration state due to its nonlinearity and the change in equilibrium state.To deal with this,a state feedback control law that automatically tracks the resonance point is developed in the present study.The proposed method enables decentralized control of the actuators on the sail,each of which determines the control input independently using only the information of vibration state.The proposed method is validated using numerical simulations.The results show that the nonlinear system behaves differently from the linear system,and the vibration grows using the decentralized control regardless of resonance point variation.
基金Project(50775194) supported by the National Natural Science Foundation of China
文摘Dynamic modeling was carried on by combining the dynamic of machinery with composite triology, and the critical condition in which the ways would not produce composite-friction self-excited vibration was obtained. The movement regularity and characteristic of the airflow in exhaust gas slit were analyzed, and the relationship between pressure lost and geometry parameters of exhaust gas slit was obtained. A dynamic model and a mathematical model were established for pneumatic half-floating slide ways by combining the dynamics of machinery with hydrokinetics. The objective function for the optimization of slide ways was established based on the fuzzy optimization theory. The membership function of fuzzy constraint was deduced, the fuzzy constraint limit was established by amplification coefficient method, and the optimal value was resolved by the multilevel fuzzy comprehensive evaluation method. By combining the internal penalty function method with the variable metric method, the fuzzy optimization design program of ways was designed based on the Matlab platform. The validation was carried on by an example, and ideal results of fuzzy optimization design of slide ways were obtained.
文摘A novel extended methodology for chatter suppression in milling process by applying external forced vibrations to the workpiece in two orthogonal directions which are the feed and cross-feed directions.Both the regenerative and forced chatter suppression during the milling process of flexible workpieces are investigated.Here,the workpiece is subject to a sinusoidal periodic force in the feed direction to disrupt the regenerative effect.Additionally,to minimize the forced chatter,the workpiece is subject to the periodic excitation force in cross-feed direction.This force is proportional to the magnitude of the estimated cutting force in cross-feed direction and has a phase opposite to the cutting force to minimize the vibration amplitudes.The effectiveness of the proposed method is evaluated numerically and experimentally,for the spindle speed located in both the local minima and local maxima of the stability lobe diagram.The numerical simulations indicate significant suppression effect in terms of vibration amplitudes,resulting in suppression of both the regenerative chatter and the forced chatter.Experiments were conducted by using a workpiece-mounted active stage composed of flexure hinges and driven by piezoelectric actuators.The experimental results agree qualitatively with the numerical simulations.The proposed method indicates a remarkable vibration reduction effect for both regenerative and forced chatters.
文摘Based on phase-plane orbit analysis, the mathematical model of piecewise-smooth systems of multi-degree-of-freedom under the mode coordinate is established. Approximate analytical solution under the physical coordinate of multi-degree-of-freedom self-excited vibration induced by dry friction of piecewise-smooth nonlinear systems is derived by means of average method, the results of which agree with those of the numerical solution. An effective and reliable analytical method investigating piecewise-smooth nonlinear systems of multi-degree-of-freedom has been given. Furthermore, this paper qualitatively analyses the curves about stationary amplitude versus rubbing velocity of hands and versus natural frequency of hands, and about angular frequency versus rubbing velocity of hands. The results provide a theoretical basis for identifying parameters of the system and the analysis of steady region.
文摘A newly found phenomenon of carved driving wheels of a rear-wheel-drive tractor used in an airport is discussed. The circum of every driving wheel is damaged at three regions, which distribute regularly and uniformly. Everyday, the tractor tows a trailer which are times heavier than the tractor, and moves on the same road in the airport. The phenomenon is explained by the torsional self-excited vibration system of the powertrain. The simplified torsional vibration system is discribed by a 2-order ordinary differential equation, which has a limit circle. Experiments and numerical simulations show the followings: Because of the heavy trailer, the slip ratio of the tractor's driving wheels is very large. Therefore, there is severe torsional self-excited vibration in the tractor's drivetrain, and the self-excited vibration results in severe and regular fluctuations of the rear wheel's velocity. The severe fluctuations in velocity fastens the damage of the driving wheels. At the same time, the time interval in which an arbitrary point in the circum of the driving wheel contacts with the road twice is two times more than the period of the torsional self-excited vibration, and this times explained the existence of three damaged regions. At last, it points out that the phenomenon can be avoided when the torsional damping is large enough.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Numbers 51375343,50775162 and 51305303).
文摘Polygonal wear seriously decreases the lifespan of a tire of a passenger car and adversely affects vehicle dynamic safety.The present paper builds a model that reflects the dynamic contact characteristics of the tire and reveals the mechanism and conditions of polygonal wear of a tire.The model describes the dynamic contact behavior of the tread block and considers the characteristics of dynamic friction between the road and tread of a rolling tire.Conducting numerical bifurcation analysis,the paper reveals the conditions for self-excited vibration of the tread,i.e.,the improper combination of the vertical load,wheel slip angle,tire pressure and vehicle speed considerably strengthen the lateral self-excited vibration of the tread,which is the direct vibrational source of abnormal circumferential polygonal wear.The polygonal wear of a tire occurs when a vehicle travels for a certain long distance at a so-called polygonal wear speed.The polygonal wear speed should induce lateral self-excited vibration on the contact tread of the tire and the frequency of the lateral self-excited vibration should be divisible by the rolling frequency of tire that is determined by the polygonal wear speed.Visible polygonal wear requires that the vehicle travels at a certain polygonal wear speed for a minimal distance to produce a stably developing polygonal wear pattern even for subsequent driving at variable speed.