Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin...Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.展开更多
A new scaffold material composed of extracellular matrix (ECM) and thermal sensitive hydrogel (HG), and evaluated its biocompatibility were investigated. We cultured bladder smooth muscle cells with this compound ...A new scaffold material composed of extracellular matrix (ECM) and thermal sensitive hydrogel (HG), and evaluated its biocompatibility were investigated. We cultured bladder smooth muscle cells with this compound material, and then observed with phase contrast microscopy and scanning electron microscope (SEM) to assess the cell growth and morphology. The cell adhesion and proliferation were detected with MTT assay and cell count. Results show the ECM/HG compounds appeared as a net-like and red-stained construction with enough meshes and without any cellular fragments. 6 h after implantation, cells were observed adhere on the compounds and extend spurious along the fibers 12 h later. Under SEM even some ECM was observed to be secreted. MTT assay shows there was obvious statistic difference among 3 groups (P〈0.05). ECM/HG compound materials show a good biocompatibility, which confirms that it would be an ideal tissue engineering scaffolds.展开更多
Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs...Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.展开更多
A new steel matrix wear resistant composite reinforced by in situ granular eutectics can be obtained by modifying with a Si-Ce-Ti compound in the steel melt. The result indicates that the in situ granular eutectic is...A new steel matrix wear resistant composite reinforced by in situ granular eutectics can be obtained by modifying with a Si-Ce-Ti compound in the steel melt. The result indicates that the in situ granular eutectic is a pseudo-eutectic of austenite and (Fe,Mn)3C, which is formed between austenite dendrites during solidification due to the segregation of C and Mn impelled by modifying elements. The quantity of in situ granular eutectic reaches up to 8%-12% and its grain size is in the range from 10um to 20um. The austenite steel matrix wear resistant composite reinforced by in situ granular eutectic (abbreviated AGE composite) and austenite-bainite steel mains wear resistant composite reinforced by in situ granular eutectic (abbreviated ABGE composite) are obtained in the as-cast state and by air hardening, respectively. The wear resistance of the AGE and ABGE composites can be more greatly increased than that of their matrix steels under low and medium impact working condition.展开更多
基金Science and Technology Innovation 2030‐“New Generation Artificial Intelligence”major project,Grant/Award Number:2020AAA0108703。
文摘Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.
基金the Natural Science Foundation of Hubei Province (No.2003ABA187)Hubei Education Bureau (No.2003X123)
文摘A new scaffold material composed of extracellular matrix (ECM) and thermal sensitive hydrogel (HG), and evaluated its biocompatibility were investigated. We cultured bladder smooth muscle cells with this compound material, and then observed with phase contrast microscopy and scanning electron microscope (SEM) to assess the cell growth and morphology. The cell adhesion and proliferation were detected with MTT assay and cell count. Results show the ECM/HG compounds appeared as a net-like and red-stained construction with enough meshes and without any cellular fragments. 6 h after implantation, cells were observed adhere on the compounds and extend spurious along the fibers 12 h later. Under SEM even some ECM was observed to be secreted. MTT assay shows there was obvious statistic difference among 3 groups (P〈0.05). ECM/HG compound materials show a good biocompatibility, which confirms that it would be an ideal tissue engineering scaffolds.
基金supported by the Tianjin Fundamental Research Program of the Tianjin Committee of Science and Technology (Grant No. 10JCYBJC050800)the National Special Science and Technology Program for Non-Profit Industry of the Ministry of Environmental Protection (Grant No. 200909022)+2 种基金the 973 Program (Grant No. 2011CB403402)the National Natural Science Foundation of China (NSFC) (Grant No. 40875001)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2008Z011)
文摘Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.
基金Acknowledgements - This project was supported by the National Natural Science Foundation of China (Grant No.50001008).
文摘A new steel matrix wear resistant composite reinforced by in situ granular eutectics can be obtained by modifying with a Si-Ce-Ti compound in the steel melt. The result indicates that the in situ granular eutectic is a pseudo-eutectic of austenite and (Fe,Mn)3C, which is formed between austenite dendrites during solidification due to the segregation of C and Mn impelled by modifying elements. The quantity of in situ granular eutectic reaches up to 8%-12% and its grain size is in the range from 10um to 20um. The austenite steel matrix wear resistant composite reinforced by in situ granular eutectic (abbreviated AGE composite) and austenite-bainite steel mains wear resistant composite reinforced by in situ granular eutectic (abbreviated ABGE composite) are obtained in the as-cast state and by air hardening, respectively. The wear resistance of the AGE and ABGE composites can be more greatly increased than that of their matrix steels under low and medium impact working condition.