This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn i...This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.展开更多
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous...We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.展开更多
基金supported in part by the NSF of China (10571024,10871040)the grant of Prominent Youth of Henan Province of China (0412000100)
文摘This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.
文摘We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.