期刊文献+
共找到613篇文章
< 1 2 31 >
每页显示 20 50 100
Low-Velocity Impact and Compression after Impact(CAI)Behaviors of Carbon-Aramid/Epoxy Hybrid Braided Composite Laminates
1
作者 CAO Hongxue SUN Ying +2 位作者 TANG Mengyun DING Xu CHEN Li 《Journal of Donghua University(English Edition)》 EI CAS 2020年第1期17-27,共11页
Low-velocity impact and in-plane axial compression after impact(CAI)behaviors of carbon-aramid/epoxy hybrid braided composite laminates were investigated experimentally.The following three different types of carbon-ar... Low-velocity impact and in-plane axial compression after impact(CAI)behaviors of carbon-aramid/epoxy hybrid braided composite laminates were investigated experimentally.The following three different types of carbon-aramid/epoxy hybrid braided composite laminates were produced and tested:(a)inter-hybrid laminates,(b)sandwich-like inter-hybrid laminates,and(c)unsymmetric-hybrid laminates.At the same time,carbon/epoxy braided composite laminates were used for comparisons.Impact properties and impact resistance were studied.Internal damages and damage mechanisms of laminates were detected by ultrasonic C-scan and B-scan methods.The results show that the ductility index(DI)values of three kinds of hybrid laminates aforementioned are 37%,4%and 120%higher than those of carbon/epoxy laminates,respectively.The peak load of inter-hybrid laminates is higher than that of sandwich-like inter-hybrid laminates and unsymmetric-hybrid laminates.The average damage area and dent depths of inter-hybrid laminates are 64%and 69%smaller than those of carbon/epoxy laminates.Those results show that carbon-aramid/epoxy hybrid braided composite laminates could significantly improve the impact properties and toughness of non-hybrid braided composite laminates. 展开更多
关键词 COMPOSITE braided COMPOSITE carbon/epoxy carbon-aramid/epoxy hybrid laminated COMPOSITE low-velocity impact in-plane axial compression compression after impact(cai)
下载PDF
DAMAGE PROGRESSIVE MODEL OF COMPRESSION OFCOMPOSITE LAMINATES AFTER LOW VELOCITY IMPACT 被引量:4
2
作者 程小全 郦正能 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第5期618-626,共9页
Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investi... Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investigate compressive properties of composite laminates after low velocity impact, three dimensional dynamic finite element method (FEM) was used to simulate low-velocity impact damage of 2 kinds of composite laminates firstly. Damage distributions and projective damage areas of the laminates were predicted under two impact energy levels. The analyzed damage after impact was considered to be the initial damage of the laminates under compressive loads. Then three dimensional static FEM was used to simulate the compressive failure process and to calculate residual compressive strengths of the impact damaged laminates. It is achieved to simulate the whole process from initial low-velocity impact damage to final compressive failure of composite laminates. Compared with experimental results, it shows that the numerical predicting results agree with the test results fairly well. 展开更多
关键词 COMPOSITE LAMINATE impact DAMAGE compression
下载PDF
Effect of SACMA and QMW Test Methods on Compressive Properties of Composite Laminates after Low Velocity Impact 被引量:2
3
作者 CHENG Xiao-quan ZHANG Zi-long +1 位作者 YI Xiao-su WU Xue-ren 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2002年第2期90-97,共8页
Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.I... Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.Impact damage distributions,compressive failure process after impact,quasi static indentation and compression of laminates with a hole were brought into comparison between these two test methods.The results showed that there is a great difference between these two test methods.Compressive behavior of laminates after impact varies with different test methods.Residual compressive strength of laminates after low velocity impact measured with SACMA Standard can reflect stiffness properties of composite resins more wholely than that measured with the other method can do.Small dimensional specimen test method should be improved on as an experimental standard of compressive strength after impact. 展开更多
关键词 composite laminates test methods low velocity impact DAMAGE residual compressive strength
下载PDF
STATIC AND FATIGUE BEHAVIOR OF IMPACTED AS4/PEEK THERMOPLASTIC COMPOSITES UNDER COMPRESSION LOAD
4
作者 沈真 陈普会 刘俊石 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第1期14-18,共5页
Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting a... Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting and thermoplastic composites shows that thermoplastics are more damage tolerant under compression. Impacted thermoplastic composites have excellent compression-compression fatigue behavior. The damage growth life is only a few percent of their total fatigue life and no regular damage growth can be found. Some design principles for thermosetting composite structures may still be used. 展开更多
关键词 Compressive strength Crack propagation Failure (mechanical) Fatigue testing Graphite fiber reinforced plastics impact resistance Polyether ether ketones Thermoplastics
下载PDF
The Impact Compression Behaviors of Silica Nanoparticles—Epoxy Composites
5
作者 Pibo Ma Gaoming Jiang +1 位作者 Yanyan Li Wenxin Zhong 《Journal of Textile Science and Technology》 2015年第1期1-11,共11页
The compressive properties of epoxy with different silica nanoparticles (SiO2 nanoparticles) contents at quasi-static and high strain rates loading were investigated via experiment. This article evaluates the compress... The compressive properties of epoxy with different silica nanoparticles (SiO2 nanoparticles) contents at quasi-static and high strain rates loading were investigated via experiment. This article evaluates the compressive failure behaviors and modes at different SiO2 nanoparticles contents and different strain rates. The results indicated that the stress strain curves were sensitive to strain rate, and the compressive failure stress of composites with various SiO2 nanoparticles contents increased with the strain rates, and it increased along with SiO2 nanoparticles contents and then declined. The compressive failure stress and the compressive failure modes of the composites were apparently different from the change of SiO2 nanoparticles contents. 展开更多
关键词 impact compression BEHAVIORS SILICA NANOPARTICLES Composites STRAIN RATE
下载PDF
Experimental crushing behavior and energy absorption of angular gradient honeycomb structures under quasi-static and dynamic compression
6
作者 Jiachen Li Yuchen Wei +2 位作者 Hao Wu Xingyu Shen Mengqi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期47-63,共17页
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and... The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments. 展开更多
关键词 Negative Poisson's ratio Gradient honeycomb structure Quasi-static compression Dynamic impact Titanium alloy
下载PDF
Effect of thermal treatment on energy dissipation of granite under cyclic impact loading 被引量:19
7
作者 Rong-hua SHU Tu-bing YIN +2 位作者 Xi-bing LI Zhi-qiang YIN Li-zhong TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第2期385-396,共12页
High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treat... High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treated rocks were carried out using the splitting Hopkinson pressure bar(SHPB)experimental system.The correlations among the energy dissipation,energy dissipation rate,impact times,accumulated absorbed energy per volume,failure mode and temperature were analyzed.The results show that the reflected energy under the first impact increases and finally exceeds the absorbed energy when the temperature increases;however,the total reflected energy decreases above 200℃.The absorbed energy under the first impact and the total absorbed energy all decrease as the temperature increases,the rates of which decrease accordingly.And the same phenomenon appears for the transmitted energy and the rate of the transmitted energy.On the contrary,the rate of the reflected energy increases with the rising temperature.When the temperature increases,the fewer impact times are needed to destroy the sample.In addition,the failure modes are different when the rock is treated at different temperatures;that is,when the temperature is high,even though the absorbed energy is low,the sample breaks into powder after several impacts. 展开更多
关键词 energy dissipation GRANITE cyclic impact compression thermal treatment
下载PDF
Effect of Calcium Carbonate Whisker on Impact Toughness of Precast Concrete 被引量:1
8
作者 LV Linnv WANG Yisa +2 位作者 HE Yongjia WANG Fazhou HU Shuguang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第3期374-380,共7页
The impact toughness and compressive strength of concrete added with calcium carbonate whisker are studied.It is found that calcium carbonate whisker can significantly improve the impact energy consumption at failure ... The impact toughness and compressive strength of concrete added with calcium carbonate whisker are studied.It is found that calcium carbonate whisker can significantly improve the impact energy consumption at failure of 55℃steam cured concrete,but has limited impact on 90℃steam cured concrete.At the same time,SEM,XRD and LF-NMR were used to study the micro morphology,hydration product components and pore structure of the concrete,and the mechanism of the influence of calcium carbonate whisker on the impact toughness and compressive strength of concrete was analyzed. 展开更多
关键词 calcium carbonate whisker concrete products impact toughness compressive strength
下载PDF
Impact Resistance of a Novel Expanded Polystyrene Cement-based Material
9
作者 朱洪波 LI Chen +2 位作者 WANG Peiming WU Mengxue YAN Meizhu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第2期284-290,共7页
The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compres... The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compression tests to gain the energy absorbed during failure. Performance for impact resistance was tested by a self-made device. The results figures out that the EPS-C has good toughness and can reach swain of 0.7 without failure. The stress-strain curve is quite different from that of normal EPS concrete. It can be divided into three stages and in the third stage the compressing exhibits the highest energy absorption. With the rising of cement ratio, the impact force absorption (IEA) decreases first and then increases. The impact energy absorption (IEA) increases first and then decreases. The lowest IEA and the highest lEA appear at the cement dosage from 233 g/L to 267 g/L and from 233 g/L to 300 g/L, respectively. 展开更多
关键词 expanded polystyrene (EPS) CEMENT compressing semi-dry materials molding compressive'behavior impact resistance
下载PDF
Evaluation of Impact Damage Tolerance in Carbon Fabric/epoxy-matrix Composites by Electrical Resistance Measurement
10
作者 李志鹏 谢小林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期484-488,共5页
Impact damage tolerance is provided in intensity design on composites. The compression intensity of impacted composites requires more than 60% of its original intensity. The influence of impact on compressive intensit... Impact damage tolerance is provided in intensity design on composites. The compression intensity of impacted composites requires more than 60% of its original intensity. The influence of impact on compressive intensity and electrical resistance of carbon fabric/epoxy-matrix composites was studied in this paper. The experimental results shows that impact can cause damage in composites, degenerate compressive intensity, and increase resistance. The electrical resistance change rate was used as an evaluation indicator of impact damage tolerance of composites. Impact damage, which results from the applying process of composites, can be identified in time by electrical resistance measurement. So, the safety performance of composites can also be improved. 展开更多
关键词 carbon fabric/epoxy-matrix composites impact damage tolerance compressive intensity after impacted electrical resistance measurement
下载PDF
Experimental Investigation on Low-Velocity Impact Response and Residual Compressive Bearing Capacity of Composite Stringers
11
作者 CHEN Fang YAO Weixing WU Fuqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期655-662,共8页
Three types of composite stringers were impacted from two different directions.Relationships between impact energy and visible defect length were found.The critical impact energy corresponding to barely visible impact... Three types of composite stringers were impacted from two different directions.Relationships between impact energy and visible defect length were found.The critical impact energy corresponding to barely visible impact damage(BVID)of each stringer was determined.Specimens with BVID were then compressed to obtain the residual strength.Experimental results showed that for all types of stringers,the critical energy of in-plane impact is always much lower than out-plane ones.In-plane impact causes much more decrement of stringers'bearing capacity than outplane impact.For both impact directions,I-stringers own the highest defect detectability,T-stringers come second.Meanwhile,I-stringers own the better residual strength ratio than I-stringers and I-stringers.Synthetic considering impact defect detectability and residual bearing capacity after impact,T-stringers own the best compression-afterimpact(CAI)behaviors. 展开更多
关键词 composite stringer low-velocity impact defect compression after impact residual bearing capacity
下载PDF
A Numerical Study on the Water Impact of the Rigid/Elastic Box-Like Structure
12
作者 YANG Jian SUN Zhao-chen LIANG Shu-xiu 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期333-342,共10页
Recent damages to the box-like structures caused by wave slamming have made it necessary to study the impact problems of this kind of structure. This paper showed findings from numerical simulations of the rigid/elast... Recent damages to the box-like structures caused by wave slamming have made it necessary to study the impact problems of this kind of structure. This paper showed findings from numerical simulations of the rigid/elastic structures, aiming to gain insights into the characteristics of the problem. The results of the rigid cases showed the significance of air compressibility during the impact process, while the slamming phenomena became quite different without the effect. In the elastic cases, the trapped air made the structure vibrate at frequencies much smaller than its eigenfrequencies. Besides, the structural deformation made it easy for the trapped air to escape outwards, which weakened the air cushioning effect, especially at high impact velocities. The above analysis gives the results when the structural symmetry axis was vertical to the water(vertical impacts). In addition, the results were given when the axis was oblique to the water(oblique impacts). Compared with the vertical cases, the impact phenomena and structural response showed asymmetry. This work used the computational fluid dynamics(CFD) method to describe fluid motion and the finite element method(FEM) for the deformable structure. A two-way coupling approach was used to deal with the fluid-structure interaction in the elastic cases. 展开更多
关键词 water impact fluid-structure interaction air compressibility box-like structures two-way coupling
下载PDF
Experimental and analytical assessment of the hypervelocity impact damage of GLAss fiber REinforced aluminum
13
作者 Md.Zahid Hasan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第7期1232-1246,共15页
This article addresses the response of GLAss fiber REinforced aluminum to hypervelocity impacts of micrometeoroid analogs at impact velocities of 7 km/s and beyond.In relation,the damage modes of different GLAss fiber... This article addresses the response of GLAss fiber REinforced aluminum to hypervelocity impacts of micrometeoroid analogs at impact velocities of 7 km/s and beyond.In relation,the damage modes of different GLAss fiber REinforced aluminum configurations have been exemplified.The GLAss fiber REinforced aluminum configurations comprised six to twelve variably thick aluminum layers and up to four plies of glass fiber reinforced epoxy per composite laminate.Hypervelocity impact experiments have been conducted with the help of a two-stage light-gas gun,wherein aluminum-and stainless steel projectiles were launched at velocities up to 7.15 km/s.Visual inspection of the damage area suggested the dissipation of impact energy in elastic-plastic deformation,petalling,delamination,debonding,tensile failure of fibers,and pyrolysis of epoxy.A prevailing damage mode was not apparent albeit.The quasi-isotropic ply orientation of S2-glass/FM94-epoxy laminates promoted the interference of shockand rarefaction waves and suppressed the damage area of GLAss fiber REinforced aluminum.To discriminate between the impact performance of different GLAss fiber REinforced aluminum configurations,the energy dissipated in different damage modes of GLAss fiber REinforced aluminum has been assessed quantitatively.In terms of normalized energy,the cross-ply GLAss fiber REinforced aluminum dissipated higher energy in petal formation than in other primary damage modes.The normalized petalling energy was found to decline with the increase of impact energy.The outcomes of this study will help to optimize the GLAss fiber REinforced aluminum laminate,which will be employed as a bumper shield to prevent the fatal damage and the unzipping of a spacecraft pressure bulkhead. 展开更多
关键词 Hypervelocity impact Petalling Fiber failure Volumetric compression Sublimation of epoxy
下载PDF
Drop weight impact analysis of GFRP tubes with hollow glass particle-filled matrix
14
作者 Daniel Paul R.Velmurugan N.K.Gupta 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期1-9,共9页
Protecting occupants or payloads in crashes and blasts is of utmost importance in both moving and immobile structures.One way of achieving this is by using a sacrificial energy absorber.Composite tubes have been studi... Protecting occupants or payloads in crashes and blasts is of utmost importance in both moving and immobile structures.One way of achieving this is by using a sacrificial energy absorber.Composite tubes have been studied as potential energy absorbers due to their ability to fail progressively under axial compression.In this study,the energy absorption capability of these tubes is enhanced by adding hollow glass particles to the matrix.Drop-weight tests are performed on composite tubes,and a digital image correlation(DIC)-based technique is used to capture their load-displacement behaviour.This eliminates the use of electronic data acquisition systems,load cells,and accelerometers.The load-displacement curves of the tubes are obtained from the DIC-based technique and examined to understand their crushing behaviour.Although the mean crush load shows a drop,an increase in crush length is noticed.The specific energy absorbed by the tubes improves with an increase in GMB volume fraction.The addition of 0.1,0.2,0.3 and 0.4 vol fractions of GMB results in the specific energy absorption increasing by6.6%,14.7%,24%and 36.6%,respectively,compared to neat glass fibre-epoxy tubes.Visual examination of the tubes and comparison with tubes subject to quasi-static compression is also performed. 展开更多
关键词 Composite tubes Syntactic foam impact Axial compression Digital image correlation
下载PDF
Experimental Study of Flexural Behaviour of Reinforced Baked Clay Beams under Impact Loading
15
作者 Nawab Ali Lakho Muhammad Auchar Zardari 《Engineering(科研)》 2016年第6期347-352,共6页
This paper presents behaviour of Reinforced Baked Clay (RBC) beams under drop weight impact loading. The beams were made of two different grades of baked clay with cube crushing strength of 20 MPa and 30 MPa, respecti... This paper presents behaviour of Reinforced Baked Clay (RBC) beams under drop weight impact loading. The beams were made of two different grades of baked clay with cube crushing strength of 20 MPa and 30 MPa, respectively. The RBC beams were subjected to repeated drop weight loading by a hammer of weight equal to that of the specimen being tested. The results showed that the impact resistance of the RBC beams was governed by the compressive strength of the baked clay. Failure of grade 20 beams occurred due to irregular cracks and the beams of grade 30 failed by opening of a single crack at mid span. It was observed that the beams of grade 30 had sustained about 1.5 times more number of impacts until steel in tension zone yielded and failed completely after necking. 展开更多
关键词 Baked Clay impact Loading Cracks DEFLECTION Compressive Strength REINFORCEMENT
下载PDF
Effect of Reinforcement on Deflection and Cracks in Baked Clay Beams Subjected to Impact Loading
16
作者 Nawab Ali Lakho Muhammad Auchar Zardari 《Engineering(科研)》 2016年第10期691-696,共7页
Attempts are being made to utilize Reinforced Baked Clay (RBC) as a substitute of Reinforced Cement Concrete (RCC) for construction of low cost houses in plains of Pakistan. Since baked clay is considered to be more b... Attempts are being made to utilize Reinforced Baked Clay (RBC) as a substitute of Reinforced Cement Concrete (RCC) for construction of low cost houses in plains of Pakistan. Since baked clay is considered to be more brittle as compared to concrete. Therefore, it is necessary to investigate how deflection and crack width of RBC beams subjected to impact loading are governed by amount of reinforcement. This paper presents the behaviour of RBC beams under drop weight impact loading. The beams were reinforced with two steel bars, one in compression zone and the other in tension zone. In group A beams, the diameter of steel bars was 12.7 mm, while the beams of group B were reinforced with steel bars of 15.8 mm diameter. The RBC beams were subjected to repeated impacts of a hammer of mass 21 kg falling from a height of 1000 mm. The results show that 1) three times reduction in deflection, and 2) 2.5 times decrease in crack width, were achieved in RBC beams by increasing the area of steel to 50%. In addition to this, all the RBC beams failed within nine blows of the hammer, irrespective of area of reinforcement. 展开更多
关键词 Reinforced Baked Clay impact Load DEFLECTION Cracks Compressive Strength
下载PDF
环绕黏结CFRP-ECC修复混凝土的动态力学和能量特性
17
作者 庞建勇 韩辰悦 胡时 《公路交通科技》 CAS CSCD 北大核心 2024年第9期87-96,共10页
为了研究环绕黏结碳纤维增强复合材料(CFRP)与工程水泥基复合材料(ECC)构成的复合增强层对小尺寸受损混凝土的修复效果,制备CFRP增强ECC-混凝土组合体试件,采用霍普金森压杆对端面粘贴、环绕粘贴CFRP的组合体进行不同气压下的冲击压缩... 为了研究环绕黏结碳纤维增强复合材料(CFRP)与工程水泥基复合材料(ECC)构成的复合增强层对小尺寸受损混凝土的修复效果,制备CFRP增强ECC-混凝土组合体试件,采用霍普金森压杆对端面粘贴、环绕粘贴CFRP的组合体进行不同气压下的冲击压缩试验。结果表明:两种组合体的峰值应力、峰值应变和动态增长因子均随冲击气压的升高而增大,环绕粘贴CFRP的组合体峰值应力、峰值应变均高于端面粘贴CFRP的组合体,0.5 MPa气压作用下,峰值应力增长达10.9%,峰值应变增长达14.98%。随着气压的升高,两种组合体的动态增长因子均呈增大趋势,两种组合体在0.7 MPa较0.3 MPa作用下,DIF分别提高了56.77%,59.41%,具有明显的应变率增长效应。0.7 MPa气压时,两种组合体的DIF均在1.6左右,因此两者均适用于高动态荷载作用环境。复合增强层为混凝土提供良好的环向约束力,有效抑制裂纹扩展。环绕粘贴CFRP的组合体破坏状态优于端面粘贴CFRP的组合体,抗冲击性能更好。两种组合体的各能量变化趋势相似,均随着气压升高而增大,且环绕粘贴CFRP的组合体较端面粘贴CFRP的组合体能量吸收能力更强,0.7 MPa时的吸收能增幅在5%左右。在小尺寸混凝土修复工程中,环绕粘贴CFRP与ECC构成的复合增强层的修复效果更佳。 展开更多
关键词 道路工程 动态力学特性 冲击压缩 工程水泥基复合材料 修复工程
下载PDF
含硫酸盐废水对磷石膏胶结充填体材料性能的影响
18
作者 石英 聂锐洋 +2 位作者 周诗彤 陆思成 卿子萱 《黄金科学技术》 CSCD 北大核心 2024年第3期416-424,共9页
鉴于矿山废水处理工艺具有一定的局限性,且磷石膏充填工艺需要消耗大量的水资源,将矿山含硫酸盐废水作为磷石膏充填用水并探讨其可行性。结果表明:废水中的硫酸盐能够促进磷石膏充填体的早期水化反应,进而提升充填体早期强度。当SO_(4)^... 鉴于矿山废水处理工艺具有一定的局限性,且磷石膏充填工艺需要消耗大量的水资源,将矿山含硫酸盐废水作为磷石膏充填用水并探讨其可行性。结果表明:废水中的硫酸盐能够促进磷石膏充填体的早期水化反应,进而提升充填体早期强度。当SO_(4)^(2-)浓度从0增加至30 000 mg/L时,充填体7 d强度由0.46 MPa升高至0.63 MPa,提高了37%;14 d强度由0.64 MPa升高至1.03 MPa,提高了61%。这主要跟水化产物钙矾石(AFt)和水化硅酸钙(C-S-H)的形成有关;但随着养护时间的增长,充填体28,60,90 d强度均在硫酸盐浓度为15 000 mg/L时达到最高。过量的SO_(4)^(2-)会干扰水化硬化过程,充填体后期强度因受到钙矾石的膨胀特性以及Na2SO4重结晶等影响而出现下降。研究结果可为矿山废水治理和磷石膏充填工艺优化提供新思路。 展开更多
关键词 环境影响 硫酸盐废水 磷石膏 水化反应 胶结充填 抗压强度
下载PDF
热冲击高强钢焊接接头的低周疲劳及断裂机理研究
19
作者 乐美玉 杨耀宁 欧振敏 《兵器材料科学与工程》 CAS CSCD 北大核心 2024年第3期120-125,共6页
为了研究热冲击下高强钢焊接接头的低周疲劳性能及断裂机理,用电弧焊焊接Q345结构钢,分别在-20~400℃、-40~650℃、-60~900℃下对焊接接头进行循环冲击,用疲劳试验机加载低周疲劳载荷,分析热冲击温度对低周疲劳性能及疲劳强度的影响,并... 为了研究热冲击下高强钢焊接接头的低周疲劳性能及断裂机理,用电弧焊焊接Q345结构钢,分别在-20~400℃、-40~650℃、-60~900℃下对焊接接头进行循环冲击,用疲劳试验机加载低周疲劳载荷,分析热冲击温度对低周疲劳性能及疲劳强度的影响,并用扫描电子显微镜等分析焊接接头的断裂机理。结果表明:相同疲劳加载次数下,焊接接头的总应变幅值随热冲击循环次数的增加匀速下降;相同热冲击循环次数下,疲劳加载次数越多,焊接接头的应变幅值越小;相同疲劳加载次数和相同热冲击循环次数下,随冲击温度范围的扩大,焊接接头的总应变幅值逐渐减小,但总应变幅值整体变化与冲击温度范围正相关。 展开更多
关键词 高强钢 焊接接头 热冲击 低周疲劳 断裂机理 抗压强度
下载PDF
复合材料层压板冲击后压缩全过程仿真分析
20
作者 刘湘云 张赢 +3 位作者 李晓龙 朱梦杰 赵征 李梦佳 《航空计算技术》 2024年第4期106-109,共4页
针对复合材料层压板低速冲击数值模拟中将冲击和压缩过程割裂计算的问题,建立了将冲击和压缩两个过程统为一体的数值模拟方法。分别采用显式分析和隐式分析模拟冲击和压缩过程,将层压板冲击后的损伤数据、应力应变数据、位移数据等作为... 针对复合材料层压板低速冲击数值模拟中将冲击和压缩过程割裂计算的问题,建立了将冲击和压缩两个过程统为一体的数值模拟方法。分别采用显式分析和隐式分析模拟冲击和压缩过程,将层压板冲击后的损伤数据、应力应变数据、位移数据等作为下一步的初始输入进行压缩模拟,并采用三维Hashin失效判据来判断复合材料的初始破坏,并对破坏后的复合材料进行刚度折减,来模拟损伤演化。采用试验标准建立有限元模型对所建立的数值模拟方法进行验证,计算结果与试验对比表明:失效模式一致,剩余强度相对误差满足工程要求。 展开更多
关键词 复合材料 冲击后压缩 剩余强度 失效准则 全过程仿真
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部