期刊文献+
共找到534篇文章
< 1 2 27 >
每页显示 20 50 100
Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay 被引量:4
1
作者 章定文 曹智国 +1 位作者 范礼彬 邓永锋 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期79-83,共5页
This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations... This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations were prepared artificially and stabilized by ordinary Portland cement with various contents. A series of UCS tests of cement stabilized clay specimen after 28 d curing were carried out. The results indicate that the increase of salt concentration results in the decrease in the UCS of cement-treated soil. The negative effect of salt concentration on the strength of cement stabilized clay directly relates to the cement content and salt concentration. The porosity-salt concentration/cement content ratio is a fundamental parameter for assessing the UCS of cement-treated salt-rich clay. An empirical prediction model of UCS is also proposed to take into account the effect of salt concentration. The findings of this study can be referenced for the stabilization improvement of chloride slat- rich soft clay. 展开更多
关键词 soft marine clay salt concentration CEMENTATION unconfined compression strength
下载PDF
Microstructures and electrochemical behaviors of casting magnesium alloys with enhanced compression strengths and decomposition rates
2
作者 Xuewu Li Qingyuan Yu +1 位作者 Xi Chen Qiaoxin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1213-1223,共11页
New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochem... New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochemical and compression tests are conducted to assess the feasibility as decomposable material.Morphology,composition,phase and distribution are characterized to investigate decomposition mechanism.Results indicate that floccule,substrate component and reticulate secondary phase are formed on as-prepared surface.Sample also acts out enhanced compression strength to maintain pressure and guarantee stability in dissolution process.Furthermore,as decomposition time and zinc content increase,couple corrosion intensifies,resulting in gradually enhanced decomposition rate.Rapid sample decomposition is mainly due to basal anode dissolution,micro particle exfoliation and poor decomposition resistance of corroding product.Such work shows profound significance in preparing new-type accessible alloy to ensure rapid dissolution of fracturing part and guarantee stable compression strength in oil-gas reservoir exploitation. 展开更多
关键词 Magnesium alloy Corrosion dissolution compression strength Electrochemical test Decomposition mechanism
下载PDF
Effect of Sample Disturbance on Unconfined Compression Strength of Natural Marine Clays 被引量:15
3
作者 刘汉龙 洪振舜 《海洋工程:英文版》 2003年第3期407-416,共10页
Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of ... Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data. 展开更多
关键词 correcting method degree of sample disturbance liquid limit natural marine clays natural water content oedometer test data unconfined compressive strength
下载PDF
Strength regularity and failure criterion of plain HSHPC under biaxial compression after exposure to high temperatures
4
作者 何振军 宋玉普 《Journal of Southeast University(English Edition)》 EI CAS 2008年第2期206-211,共6页
Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1... Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures stress ratio uniaxial and biaxial compressive strength failure criterion
下载PDF
Degree of compaction and compression strength of Nigerian Alfisol under tilled condition and different machinery traffic passes
5
作者 Fasinmirin Johnson Toyin Adesigbin Adedayo Joseph 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2012年第2期34-41,共8页
Information on the effect of soil compaction on soil mechanical properties such as degree of compaction,compression and shear strength of tropical soils of Nigeria under different machinery traffic passes is very scar... Information on the effect of soil compaction on soil mechanical properties such as degree of compaction,compression and shear strength of tropical soils of Nigeria under different machinery traffic passes is very scarce.Field experiment was conducted in a tilled and compacted sandy clay loam(Alfisol)in Akure,Nigeria,under different machinery traffic passes to determine compaction effects on bulk density,compression strength,degree of compaction and the shear strength of soil.Four plots,A,B,C and D of area 20 m×50 m each were used for the field experiment.Treatment plot A was tilled with a tractor-mounted disc plough,and the remaining three plots:B,C and D were subjected to 5,10 and 15 to and fro passes,respectively,using heavy duty Mercy Fergusson tractor model 4355(3.82 Mg).The treatments were replicated three times in a randomized complete block design.Compacted plots progressively increased the bulk density from 1.63 g/cm^(3) to 1.90 g/cm^(3),but the highest bulk density was observed in plots under 15 traffic passes with the value of(1.90±0.23)g/cm3.The percentage of soil compaction varies from 90.5%to 97%at the 0-10 cm soil layer.The compression strength of soil increased from 31.00 kPa to 42.05 kPa and from 29.68 to 65.44 kPa at the 0-10 cm and 10-20 cm soil layers,respectively,which resulted in the increased shear strength from 15.79 kPa to 21.03 kPa and 14.8 kPa to 32.72 kPa at the 0-10 cm and 10-20 cm in plots under 5 and 15 traffic passes,respectively.Plot A(tilled soil)had the lowest bulk density,degree of compaction and compression strength with values(1.51±0.19)g/cm^(3),88.2%,and(12.15±0.37)kPa,respectively,and consequently the lowest shear strength of(6.02±1.23)kPa,which enhanced air movement and microbial activities in the soil.Soil under 15 traffic passes,especially at the 10-20 cm soil layer,may result in poor root penetration when cropped but can be very reliable and consistent when used for structural purposes. 展开更多
关键词 soil compaction TILLAGE degree of compaction compression strength shear strength farm machine traffic passes bulk density
原文传递
Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms
6
作者 Junjie Zhao Diyuan Li +1 位作者 Jingtai Jiang Pingkuang Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期275-304,共30页
Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining envir... Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining environments under high in-situ stress.Thus,this study aims to develop an advanced model for predicting the UCS of rockmaterial in deepmining environments by combining three boosting-basedmachine learning methods with four optimization algorithms.For this purpose,the Lead-Zinc mine in Southwest China is considered as the case study.Rock density,P-wave velocity,and point load strength index are used as input variables,and UCS is regarded as the output.Subsequently,twelve hybrid predictive models are obtained.Root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R2),and the proportion of the mean absolute percentage error less than 20%(A-20)are selected as the evaluation metrics.Experimental results showed that the hybridmodel consisting of the extreme gradient boostingmethod and the artificial bee colony algorithm(XGBoost-ABC)achieved satisfactory results on the training dataset and exhibited the best generalization performance on the testing dataset.The values of R2,A-20,RMSE,and MAE on the training dataset are 0.98,1.0,3.11 MPa,and 2.23MPa,respectively.The highest values of R2 and A-20(0.93 and 0.96),and the smallest RMSE and MAE values of 4.78 MPa and 3.76MPa,are observed on the testing dataset.The proposed hybrid model can be considered a reliable and effective method for predicting rock UCS in deep mines. 展开更多
关键词 Uniaxial compression strength strength prediction machine learning optimization algorithm
下载PDF
Unconfined compressive strength and failure behaviour of completely weathered granite from a fault zone
7
作者 DU Shaohua MA Jinyin +1 位作者 MA Liyao ZHAO Yaqian 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2140-2158,共19页
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests... Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition. 展开更多
关键词 Fault fracture zone Completely weathered granite(CWG) Unconfined compression strength(UCS) Multiple nonlinear regression model
下载PDF
Strength and deformation behaviors of cemented tailings backfill under triaxial compression 被引量:10
8
作者 XU Wen-bin LIU Bin WU Wei-lü 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3531-3543,共13页
It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformat... It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB. 展开更多
关键词 cemented tailings backfill triaxial compressive strength volumetric strain elastic modulus COHESION friction angle
下载PDF
A new nonlinear empirical strength criterion for rocks under conventional triaxial compression 被引量:9
9
作者 XIE Shi-jie LIN Hang +1 位作者 CHEN Yi-fan WANG Yi-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1448-1458,共11页
The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under di... The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under different confining pressures,a nonlinear empirical strength criterion based on Mohr-Coulomb criterion was proposed in this paper.Through the analysis of triaxial test strength of 11 types of rock materials,the feasibility and validity of proposed criterion was discussed.For a further verification,six typical strength criteria were selected,and the prediction results of each criterion and test results were statistically analyzed.The comparative comparison results show that the prediction results obtained by applying this new criterion to 97 conventional triaxial compression tests of 11 different rock materials are highly consistent with the experimental data.Statistical analysis was executed to assess the application of the new criterion and other classical criteria in predicting the failure behavior of rock.This proposed empirical criterion provides a new reference and method for the determination of triaxial compressive strength of rock materials. 展开更多
关键词 rock mechanics conventional triaxial compressive strength empirical strength criterion statistic evaluation
下载PDF
FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES 被引量:2
10
作者 Zhenjun He Yupu Song 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期149-159,共11页
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char... An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures uniaxial biaxial compressive strength failure criterion stress-strain relationship
下载PDF
Assessment of compressive strength of jet grouting by machine learning 被引量:1
11
作者 Esteban Diaz Edgar Leonardo Salamanca-Medina Roberto Tomas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期102-111,共10页
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope... Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns. 展开更多
关键词 Jet grouting Ground improvement Compressive strength Machine learning
下载PDF
Predicting uniaxial compressive strength of tuff after accelerated freeze-thaw testing: Comparative analysis of regression models and artificial neural networks
12
作者 Ogün Ozan VAROL 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3521-3535,共15页
Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern const... Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern construction as well. However, ignimbrites are particularly vulnerable to atmospheric conditions, such as freeze-thaw cycles, due to their high porosity, which is a result of their formation process. When water enters the pores of the ignimbrites, it can freeze during cold weather. As the water freezes and expands, it generates internal stress within the stone, causing micro-cracks to develop. Over time, repeated freeze-thaw (F-T) cycles lead to the growth of these micro-cracks into larger cracks, compromising the structural integrity of the ignimbrites and eventually making them unsuitable for use as building materials. The determination of the long-term F-T performance of ignimbrites can be established after long F-T experimental processes. Determining the long-term F-T performance of ignimbrites typically requires extensive experimental testing over prolonged freeze-thaw cycles. To streamline this process, developing accurate predictive equations becomes crucial. In this study, such equations were formulated using classical regression analyses and artificial neural networks (ANN) based on data obtained from these experiments, allowing for the prediction of the F-T performance of ignimbrites and other similar building stones without the need for lengthy testing. In this study, uniaxial compressive strength, ultrasonic propagation velocity, apparent porosity and mass loss of ignimbrites after long-term F-T were determined. Following the F-T cycles, the disintegration rate was evaluated using decay function approaches, while uniaxial compressive strength (UCS) values were predicted with minimal input parameters through both regression and ANN analyses. The ANN and regression models created for this purpose were first started with a single input value and then developed with two and three combinations. The predictive performance of the models was assessed by comparing them to regression models using the coefficient of determination (R2) as the evaluation criterion. As a result of the study, higher R2 values (0.87) were obtained in models built with artificial neural network. The results of the study indicate that ANN usage can produce results close to experimental outcomes in predicting the long-term F-T performance of ignimbrite samples. 展开更多
关键词 IGNIMBRITE Uniaxial compressive strength FREEZE-THAW Decay function Regression Artificial neural network
下载PDF
Failure behavior and strength model of blocky rock mass with and without rockbolts
13
作者 Chun Zhu Xiansen Xing +4 位作者 Manchao He Zhicheng Tang Feng Xiong Zuyang Ye Chaoshui Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期747-762,共16页
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme... To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks. 展开更多
关键词 Blocky rock mass Rockbolt ground support Uniaxial compression test Failure mechanism Uniaxial compressive strength model
下载PDF
Predicting dynamic compressive strength of frozen-thawed rocks by characteristic impedance and data-driven methods
14
作者 Shengtao Zhou Zong-Xian Zhang +3 位作者 Xuedong Luo Yifan Huang Zhi Yu Xiaowei Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2591-2606,共16页
In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw wea... In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw weathering conditions is often both time-consuming and expensive.Therefore,this study considers the effect of characteristic impedance on DCS and aims to quickly determine the DCS of frozen-thawed rocks through the application of machine-learning techniques.Initially,a database of DCS for frozen-thawed rocks,comprising 216 rock specimens,was compiled.Three external load parameters(freeze-thaw cycle number,confining pressure,and impact pressure)and two rock parameters(characteristic impedance and porosity)were selected as input variables,with DCS as the predicted target.This research optimized the kernel scale,penalty factor,and insensitive loss coefficient of the support vector regression(SVR)model using five swarm intelligent optimization algorithms,leading to the development of five hybrid models.In addition,a statistical DCS prediction equation using multiple linear regression techniques was developed.The performance of the prediction models was comprehensively evaluated using two error indexes and two trend indexes.A sensitivity analysis based on the cosine amplitude method has also been conducted.The results demonstrate that the proposed hybrid SVR-based models consistently provided accurate DCS predictions.Among these models,the SVR model optimized with the chameleon swarm algorithm exhibited the best performance,with metrics indicating its effectiveness,including root mean square error(RMSE)﹦3.9675,mean absolute error(MAE)﹦2.9673,coefficient of determination(R^(2))﹦0.98631,and variance accounted for(VAF)﹦98.634.This suggests that the chameleon swarm algorithm yielded the most optimal results for enhancing SVR models.Notably,impact pressure and characteristic impedance emerged as the two most influential parameters in DCS prediction.This research is anticipated to serve as a reliable reference for estimating the DCS of rocks subjected to freeze-thaw weathering. 展开更多
关键词 Freeze-thaw cycle Characteristic impedance Dynamic compressive strength Machine learning Support vector regression
下载PDF
Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks
15
作者 Kolli Ramujee Pooja Sadula +4 位作者 Golla Madhu Sandeep Kautish Abdulaziz S.Almazyad Guojiang Xiong Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1455-1486,共32页
Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventio... Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering. 展开更多
关键词 Class F fly ash compressive strength geopolymer concrete PREDICTION deep learning convolutional neural network
下载PDF
An Effective Hybrid Model of ELM and Enhanced GWO for Estimating Compressive Strength of Metakaolin-Contained Cemented Materials
16
作者 Abidhan Bardhan Raushan Kumar Singh +1 位作者 Mohammed Alatiyyah Sulaiman Abdullah Alateyah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1521-1555,共35页
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf o... This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal performance.The EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was built.To train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was collected.Based on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive precision.Experimental consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)phases.The outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness. 展开更多
关键词 Metakaolin-contained cemented materials compressive strength extreme learning machine grey wolf optimizer swarm intelligence uncertainty analysis artificial intelligence
下载PDF
Fluid-Related Performances and Compressive Strength of Clinker-Free Cementitious Backfill Material Based on Phosphate Tailings
17
作者 Jin Yang Senye Liu +3 位作者 Xingyang He Ying Su Jingyi Zeng Bohumír Strnadel 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2077-2090,共14页
Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and o... Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings. 展开更多
关键词 FLUIDITY RHEOLOGY compressive strength phosphate tailing backfill material
下载PDF
An Investigation into the Compressive Strength,Permeability and Microstructure of Quartzite-Rock-Sand Mortar
18
作者 Wei Chen Wuwen Liu Yue Liang 《Fluid Dynamics & Materials Processing》 EI 2024年第4期859-872,共14页
River sand is an essential component used as a fine aggregate in mortar and concrete.Due to unrestrained exploitation,river sand resources are gradually being exhausted.This requires alternative solutions.This study d... River sand is an essential component used as a fine aggregate in mortar and concrete.Due to unrestrained exploitation,river sand resources are gradually being exhausted.This requires alternative solutions.This study deals with the properties of cement mortar containing different levels of manufactured sand(MS)based on quartzite,used to replace river sand.The river sand was replaced at 20%,40%,60%and 80%with MS(by weight or volume).The mechanical properties,transfer properties,and microstructure were examined and compared to a control group to study the impact of the replacement level.The results indicate that the compressive strength can be improved by increasing such a level.The strength was improved by 35.1%and 45.5%over that of the control mortar at replacement levels of 60%and 80%,respectively.Although there was a weak link between porosity and gas permeability in the mortars with manufactured sand,the gas permeability decreased with growing the replacement level.The microstructure of the MS mortar was denser,and the cement paste had fewer microcracks with increasing the replacement level. 展开更多
关键词 Manufactured sand QUARTZITE compressive strength gas permeability MICROSTRUCTURE
下载PDF
Effect of Steel Fiber on Concrete’s Compressive Strength 被引量:1
19
作者 Mohammed Saed Yusuf Abdirisak Bashir Isak +4 位作者 Guled Ali Mohamud Abdullahi Hashi Warsame Yahye Ibrahim Osman Abdullahi Husein Ibrahim Liban Abdi Aziz Elmi 《Open Journal of Civil Engineering》 CAS 2023年第1期192-197,共6页
The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers... The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers best result. Manually, cement, fine aggregates, coarse aggregates, steel fibers, and water were mixed together properly. A slump test was carried on the mixed concrete. After determining the workability, the mixed concrete was poured into cubes dimension 150 mm × 150 mm × 150 mm and left for 24 hours. After 24 hours, the samples were removed from the mold and placed in a water tank to cure for 7 to 28 days. The cube was tested for compressive and flexural strength in a universal testing machine after the samples had cured for the required 7 - 28 days. This study focuses on how to obtain high strength concrete using with steel fiber in the Conventional mix ratio to enhance concrete strength. Concrete reinforcement using steel fibers alters the characteristics of the concrete, allowing it to withstand fracture and hence improve its mechanical qualities. This study reports on an experimental study that reveals the effect of steel fiber on concrete compressive strength and the optimal steel fiber ratio that produces the best results. Steel fiber reinforcing improved the compressive strength of concrete. The average compressive strength of normal M25 concrete with 0% steel fibers and curing ages of 7 and 28 days was determined to be 22.97 N/mm<sup>2</sup> and 25.78 N/mm<sup>2</sup>, respectively. The steel fibers are then added in various concentrations, such as 1%, 2%, and 3%, with aspect ratios of 70. The compressive strength of concrete with 1%, 2%, and 3% steel fiber with an aspect ratio of 70 was examined at 7 days and found to be 23.96, 24.80, and 26.14 N/mm<sup>2</sup> correspondingly. 展开更多
关键词 Steel Fiber Reinforced Concrete Fiber Reinforcement compression strength of Concrete Improvement compression strength
下载PDF
Prediction of compressive strength of cement mortars with fly ash and activated coal gangue 被引量:5
20
作者 周双喜 陈益民 张文生 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期549-552,共4页
The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive st... The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete. 展开更多
关键词 thermal activated coal gangue simplex-centroid design predicating equation compressive strength
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部