In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem i...In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.展开更多
Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,...Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.展开更多
High energy consumption is one of the key issues of cloud computing systems. Incoming jobs in cloud computing environments have the nature of randomness, and compute nodes have to be powered on all the time to await i...High energy consumption is one of the key issues of cloud computing systems. Incoming jobs in cloud computing environments have the nature of randomness, and compute nodes have to be powered on all the time to await incoming tasks. This results in a great waste of energy. An energy-saving task scheduling algorithm based on the vacation queuing model for cloud computing systems is proposed in this paper. First, we use the vacation queuing model with exhaustive service to model the task schedule of a heterogeneous cloud computing system.Next, based on the busy period and busy cycle under steady state, we analyze the expectations of task sojourn time and energy consumption of compute nodes in the heterogeneous cloud computing system. Subsequently, we propose a task scheduling algorithm based on similar tasks to reduce the energy consumption. Simulation results show that the proposed algorithm can reduce the energy consumption of the cloud computing system effectively while meeting the task performance.展开更多
基金Supported by the National Basic ResearchProgramof China (973 Program2003CB314804)
文摘In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.
基金ACKNOWLEDGEMENTS The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. The research has been partly supported by National Natural Science Foundation of China No. 61272528 and No. 61034005, and the Central University Fund (ID-ZYGX2013J073).
文摘Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.
基金supported by Research and Innovation Projects for Graduates of Jiangsu Graduates of Jiangsu Province (No. CXZZ12 0483)the Science and Technology Support Program of Jiangsu Province (No. BE2012849)
文摘High energy consumption is one of the key issues of cloud computing systems. Incoming jobs in cloud computing environments have the nature of randomness, and compute nodes have to be powered on all the time to await incoming tasks. This results in a great waste of energy. An energy-saving task scheduling algorithm based on the vacation queuing model for cloud computing systems is proposed in this paper. First, we use the vacation queuing model with exhaustive service to model the task schedule of a heterogeneous cloud computing system.Next, based on the busy period and busy cycle under steady state, we analyze the expectations of task sojourn time and energy consumption of compute nodes in the heterogeneous cloud computing system. Subsequently, we propose a task scheduling algorithm based on similar tasks to reduce the energy consumption. Simulation results show that the proposed algorithm can reduce the energy consumption of the cloud computing system effectively while meeting the task performance.