Purpose: Surgical templates produced by digital simulation and CAD/CAM allow for three-dimensional control of implant placement. However, due to clinical limitations, there are complications during the use of the temp...Purpose: Surgical templates produced by digital simulation and CAD/CAM allow for three-dimensional control of implant placement. However, due to clinical limitations, there are complications during the use of the template. The purpose of this study was to summarize the complications associated with the use of surgical templates for static computer-aided implant surgery. Methods: Complications were collected during the observation period, and then their implant sites were reanalyzed with simulation software. Results: There were 104 cases during the observation period, 5 cases had complications. Mechanical complications were observed in four cases, including three cases in which the frame of the template fractured during implant placement surgery and one case in which the sleeve fell off the surgical template. In one case, there was an error in the planned position. All cases were mandibular molar cases, and all cases of frame fracture were at the free end defect site. All cases had a Hounsfield unit of more than 700 at the implant site, and some of them had a significantly small jaw opening. Conclusion: Although the spread of CAD/CAM surgical templates has made it possible to avoid problems caused by the position of the implant, it has been difficult to avoid fractures in cases of mandibular free end defects with high Hounsfield unit.展开更多
It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on...It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys.展开更多
The field of solid modeling has created numerous techniques for unambiguous computer representations of three-dimensional objects. Its data structures and algorithms have been used in a broad range of applications: Co...The field of solid modeling has created numerous techniques for unambiguous computer representations of three-dimensional objects. Its data structures and algorithms have been used in a broad range of applications: Computer-Aided Design and Computer-Aided Manufacturing (CAD/ CAM), robotics, computer vision, computer graphics and visualization, virtual reality, etc. This research paper is used to generate process plan from feature-based modeling, based on an integrated geometric modeling system that supports both feature-based modeling and information storage. Present system is developed only for milling components and limited to selective machining features for prismatic components and further implemented for more machining features to develop algorithms for modeling the components through the input of machining features. As a result, feature information is directly available to downstream activities, and feature extraction is no longer needed. The various systematic steps involved in this approach are study of Design, identification of Features, selection of Processes, Tools and Machines, Machining and Inspection [DFPTMMI]. Machining features generated in the design stage are recognized and stored under the Visual Basic control of CATIA software ActiveX interface. Algorithms are developed for individual features and these algorithms are embedded in Visual Basic forms. This system is discussed and suited for 2.5 Dimensional part approach, however, that can be extended to 3 dimensional prismatic part and complex features machining. Finally a process planning chart has been presented as a model process planning.展开更多
Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual sk...Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual skill. Here we propose a computer-aided method for fabricating finger pros-theses to save time and allow fabrications that do not require considerable manual skill. In this method, the dimensions of a patient’s healthy finger on the contralateral hand are first measured using a caliper. Using these dimensions, a three-dimensional model is constructed for fabricating a prosthesis for the patient’s impaired finger. Using the 3D model, a mold is designed using 3D modeling tools and a computer-aided design system. The resulting mold is then fabricated using a 3D printer. A finger prosthesis is fabricated by pouring silicone resin into the mold. A finger prosthesis for a volunteer was experimentally fabricated according to the proposed method. To evaluate the size and shape of the finger prosthesis, the difference between the finger prosthesis and the original finger of the volunteer was analyzed. Because the average difference between them was 0.25 mm, it was concluded that the proposed method could be used to fabricate a finger prosthesis of adequate size and shape.展开更多
文摘Purpose: Surgical templates produced by digital simulation and CAD/CAM allow for three-dimensional control of implant placement. However, due to clinical limitations, there are complications during the use of the template. The purpose of this study was to summarize the complications associated with the use of surgical templates for static computer-aided implant surgery. Methods: Complications were collected during the observation period, and then their implant sites were reanalyzed with simulation software. Results: There were 104 cases during the observation period, 5 cases had complications. Mechanical complications were observed in four cases, including three cases in which the frame of the template fractured during implant placement surgery and one case in which the sleeve fell off the surgical template. In one case, there was an error in the planned position. All cases were mandibular molar cases, and all cases of frame fracture were at the free end defect site. All cases had a Hounsfield unit of more than 700 at the implant site, and some of them had a significantly small jaw opening. Conclusion: Although the spread of CAD/CAM surgical templates has made it possible to avoid problems caused by the position of the implant, it has been difficult to avoid fractures in cases of mandibular free end defects with high Hounsfield unit.
基金supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore under the IAF-PP program‘Integrated large format hybrid manufacturing using wire-fed and powder-blown technology for LAAM process’,Grant No.A1893a0031the Academy of Sciences Project of Guangdong Province,Grant No.2016GDASRC-0105。
文摘It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys.
文摘The field of solid modeling has created numerous techniques for unambiguous computer representations of three-dimensional objects. Its data structures and algorithms have been used in a broad range of applications: Computer-Aided Design and Computer-Aided Manufacturing (CAD/ CAM), robotics, computer vision, computer graphics and visualization, virtual reality, etc. This research paper is used to generate process plan from feature-based modeling, based on an integrated geometric modeling system that supports both feature-based modeling and information storage. Present system is developed only for milling components and limited to selective machining features for prismatic components and further implemented for more machining features to develop algorithms for modeling the components through the input of machining features. As a result, feature information is directly available to downstream activities, and feature extraction is no longer needed. The various systematic steps involved in this approach are study of Design, identification of Features, selection of Processes, Tools and Machines, Machining and Inspection [DFPTMMI]. Machining features generated in the design stage are recognized and stored under the Visual Basic control of CATIA software ActiveX interface. Algorithms are developed for individual features and these algorithms are embedded in Visual Basic forms. This system is discussed and suited for 2.5 Dimensional part approach, however, that can be extended to 3 dimensional prismatic part and complex features machining. Finally a process planning chart has been presented as a model process planning.
文摘Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual skill. Here we propose a computer-aided method for fabricating finger pros-theses to save time and allow fabrications that do not require considerable manual skill. In this method, the dimensions of a patient’s healthy finger on the contralateral hand are first measured using a caliper. Using these dimensions, a three-dimensional model is constructed for fabricating a prosthesis for the patient’s impaired finger. Using the 3D model, a mold is designed using 3D modeling tools and a computer-aided design system. The resulting mold is then fabricated using a 3D printer. A finger prosthesis is fabricated by pouring silicone resin into the mold. A finger prosthesis for a volunteer was experimentally fabricated according to the proposed method. To evaluate the size and shape of the finger prosthesis, the difference between the finger prosthesis and the original finger of the volunteer was analyzed. Because the average difference between them was 0.25 mm, it was concluded that the proposed method could be used to fabricate a finger prosthesis of adequate size and shape.