期刊文献+
共找到2,311篇文章
< 1 2 116 >
每页显示 20 50 100
Utilization of Basalt Saw Mud as a Spherical Porous Functional Aggregate for the Preparation of Ordinary Structure Concrete 被引量:1
1
作者 周永祥 关青锋 +2 位作者 LENG Faguang WANG Jing LI Tianjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期364-375,共12页
To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)... To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete. 展开更多
关键词 lightweight concrete civil concrete building basalt saw mud fly ash internal curing environmentally friendly
下载PDF
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams
2
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 concrete dam Buttress dam SLIDING Shear strength concrete-rock interface Asperity inclination Asperity location
下载PDF
Discussion on Detection and Evaluation of Simply Supported Prestressed Concrete Small Box Girder Bridge After a Fire
3
作者 Qing Yang Jiang Feng 《Journal of Architectural Research and Development》 2024年第2期108-113,共6页
The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness de... The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness detection,concrete strength detection,concrete surface damage layer detection,reinforcement protective layer detection,and concrete carbonation detection.It is hoped that this analysis can be used as a reference for the detection and evaluation of future bridge projects with fire incidents to smoothen its subsequent repair and maintenance. 展开更多
关键词 Prestressed concrete box girder Simply supported small box girder Fire damage concrete testing Reinforcement testing
下载PDF
Intelligent Small Sample Defect Detection of Concrete Surface Using Novel Deep Learning Integrating Improved YOLOv5 被引量:2
4
作者 Yongming Han Lei Wang +1 位作者 Youqing Wang Zhiqiang Geng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期545-547,共3页
Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The p... Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality. 展开更多
关键词 concrete integrating ALGORITHM
下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
5
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 High-speed penetration concrete target EROSION Projectile nose evolution model
下载PDF
Fractal Study on the Evolution of Micro-Pores in Concrete Under Freeze-Thaw
6
作者 孙浩然 邹春霞 +2 位作者 XU Deru GUO Xiaosong HUANG Kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期109-117,共9页
After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and t... After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and the 3D pore distribution curve before and after freezing and thawing. The fractal dimension is utilized to characterize the two-dimensional topography image and the three-dimensional pore distribution, quantitatively. The results reveal that the surface porosity and volume porosity increase as the freeze-thaw action increases. Self-similarity characteristics exist in micro-damage inside the concrete. In the fractal dimension, it is possible to characterize pore evolution quantitatively. The fractal dimension correlates with pore damage evolution. The fractal dimension effectively quantitatively characterizes micro-damage features at various scales from the local to the global level. 展开更多
关键词 fractal dimension freeze-thaw cycle concrete SEM NMR
下载PDF
Mesoscale Mechanical Properties and Influencing Factors of Concrete under Uniaxial Tension
7
作者 CHEN Tao LI Kungang XIAO Shiyun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1156-1168,共13页
Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile... Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile loads were studied using statistical results.The results indicated that the entire process of damage and failure of specimens exhibited mainly two failure types:fracture patternsⅠandⅡ.Furthermore,the influences of the aggregate content ratio,aggregate shape,aggregate size,interfacial transition zone(ITZ)strength,and porosity ratio on the concrete specimens were analyzed.The numerical simulation results showed that the elastic modulus of the concrete specimens increased approximately linearly with the aggregate volume ratio but decreased linearly with the porosity and was not affected by the ITZ strength.The tensile strength decreased with the increases in the aggregate content and porosity of the sample,but increased linearly with the ITZ strength.In addition,the aggregate shape led to a difference in the tensile strength of the concrete. 展开更多
关键词 concrete mechanical behavior AGGREGATE interfacial transition zone PORE
下载PDF
Effects of Initial Defects on Effective Elastic Modulus of Concrete with Mesostructure
8
作者 LI Xinxin DU Cheng +2 位作者 LI Chengyu XU Yi GONG Wenping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1484-1495,共12页
An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interf... An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape. 展开更多
关键词 concrete initial defects effective elastic modulus mesostructure model FEM
下载PDF
Micro-structure and Macro-performance:Surface Layer Evolution of Concrete under Long-term Exposure in Harsh Plateau Climate
9
作者 CHEN Xin CUI Anqi +4 位作者 ZHENG Haitao YANG Wencui HUANG Xin GE Yong LI Lihui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1496-1506,共11页
We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogr... We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions. 展开更多
关键词 concrete pore structure interface transition zone mechanical property chloride ion impenetrability PLATEAU
下载PDF
Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
10
作者 丁庆军 ZHOU Changsheng +4 位作者 张高展 GUO Hong LI Yang ZHANG Yongyuan GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期673-681,共9页
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ... We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering. 展开更多
关键词 ultra-high performance concrete mechanical properties fine aggregates MICROSTRUCTURE NANOINDENTATION
下载PDF
Effect of Modification Treatment on Chloride Ions Permeability and Microstructure of Recycled Brick-mixed Aggregate Concrete
11
作者 何子明 申爱琴 +2 位作者 WANG Xiaobin WU Jinhua WANG Lusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期728-737,共10页
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength... The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution. 展开更多
关键词 recycled aggregate concrete modification treatment compressive strength chloride permeability resistance MICROSTRUCTURE
下载PDF
Comparative impact behaviours of ultra high performance concrete columns reinforced with polypropylene vs steel fibres
12
作者 Thong M.Pham Harrison Hyde +4 位作者 Maw K.Kaung Yan Zhuge Duong T.Tran Des Vlietstra Tung M.Tran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期138-153,共16页
Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacit... Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance. 展开更多
关键词 Ultra high-performance concrete Steel fibre Polypropylene micro-fibre Fibre volume fraction Impact loading Pendulum tests COLUMNS
下载PDF
Quantification of the concrete freeze–thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
13
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma... The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 Freeze–thaw cycles Quantification Machine learning algorithms Qinghai–Tibet Plateau concrete
下载PDF
Evaluation of internal void related defects in reinforced concrete slab using electromagnetic wave properties
14
作者 Minju Kang Jinyoung Hong +2 位作者 Taemin Lee Doyun Kim Hajin Choi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期525-535,共11页
This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured ... This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods. 展开更多
关键词 GPR concrete defect electromagnetic wave relative permittivity non-destructive testing(NDT)
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
15
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance Model test POLYUREA concrete box girder Numerical simulation
下载PDF
Experimental study on the size effect on the equation of state of concretes under shock loading
16
作者 Mei Li Jian Cui +2 位作者 Yanchao Shi Baijian Tang Xin Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期160-167,共8页
Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which d... Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for. 展开更多
关键词 concrete Equation of state Size effect Shock wave Fly-plate impact test
下载PDF
Resilience-incorporated seismic risk assessment of precast concrete frames with“dry”connections
17
作者 Wu Chenhao Tang Yuchuan +1 位作者 Cao Xuyang Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期403-425,共23页
A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms o... A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF. 展开更多
关键词 precast concrete frame non-emulative precast system seismic resilience seismic risk functional recovery
下载PDF
Numerical investigation of the effects of soil-structure and granular material-structure interaction on the seismic response of a flat-bottom reinforced concrete silo
18
作者 Sonia Benkhellat Mohammed Kadri Abdelghani Seghir 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期609-623,共15页
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte... In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%. 展开更多
关键词 reinforced concrete silo perfectly matched layers soil-structure interaction granular material-structure interaction effective seismic input method damage index
下载PDF
Effect of Aggregate Gradation on the Properties of 3D Printed Recycled Coarse Aggregate Concrete
19
作者 DING Yahong TONG Jiaqi +3 位作者 ZHANG Meixiang GUO Shuqi ZHANG Yaqi ZHAO Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1541-1554,共14页
A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with ... A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed. 展开更多
关键词 3D printed recycled coarse aggregate concrete aggregate gradation excess paste WORKABILITY mechanical performance
下载PDF
Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks
20
作者 Kolli Ramujee Pooja Sadula +4 位作者 Golla Madhu Sandeep Kautish Abdulaziz S.Almazyad Guojiang Xiong Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1455-1486,共32页
Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventio... Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering. 展开更多
关键词 Class F fly ash compressive strength geopolymer concrete PREDICTION deep learning convolutional neural network
下载PDF
上一页 1 2 116 下一页 到第
使用帮助 返回顶部