Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters....Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field.展开更多
According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive m...According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.展开更多
China is a country of high seismicity with many hydropower resources. Recently,a series of high arch dams have either been completed or are being constructed in seismic regions,of which most are concrete dams. The eva...China is a country of high seismicity with many hydropower resources. Recently,a series of high arch dams have either been completed or are being constructed in seismic regions,of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper,a brief introduction to major progress in the research on seismic aspects of large concrete dams,conducted mainly at the Institute of Water Resources and Hydropower Research(IWHR) during the past 60 years,is presented. The dam site-specific ground motion input,improved response analysis,dynamic model test verification,field experiment investigations,dynamic behavior of dam concrete,and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.展开更多
An overview of the GeoSafe 2016 Symposium topic is provided using the example of large concrete dams for purposes of illustration.It is essential that the risks associated with large dams be evaluated rigorously and m...An overview of the GeoSafe 2016 Symposium topic is provided using the example of large concrete dams for purposes of illustration.It is essential that the risks associated with large dams be evaluated rigorously and managed proactively at all stages of their lives so that the risk of failure remains As Low As Reasonably Practicable(ALARP).Rock engineering features of large concrete dams that require particular attention,assessment and monitoring during the investigation,design,construction,initial filling,inservice operation,and subsequent repair and upgrade stages of the lives of concrete dams are identified and illustrated by examples from recorded experiences.A number of major concrete dam failures,including that of the St.Francis dam,California,U.S.A.,in 1928,have led to significant developments in rock mechanics and rock engineering knowledge and techniques,as well as in dam design and review processes.More recent advances include a range of analytical,numerical modelling,probabilistic,reliability,failure mode and risk assessment approaches.展开更多
Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An...Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams.To connect laboratory test with numerical simulation,dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index,a deterioration model is established to predict the mechanical property of leached concrete in the first step.A coupled seepage-calcium dissolutionmigrationmodel containing two calculation modes is proposed to simulate the spatially non-uniformdeterioration of concrete dams.Based on the simulated state of a roller compacted concrete dam subjected to 100 years of seepage dissolution,seismic responses of the damare subsequently analyzed.During which the nonlinear cracking of concrete,the radiation damping of the far-field foundation is considered.Research results show that seepage dissolution will seriously weaken the seismic safety of concrete dams because of the dissolution-induced decrease of effective thickness of the dam body.The upstream surface,dam toe and gallery wall suffer from a large degree of dissolution,whereas it is minimal and basically the same inside the dam body,at a degree of 0.19%within 100 years.The horizontal displacements of dam crest under the design static load and fortification against earthquake increase by 6.9%and 21.9%,respectively,and the dissolution-induced seismic cracking leads to the failure of dam anti-seepage system.This study can provide engineers with a reference basis for reinforcement decision of old concrete dams.展开更多
A scheme for identifying rolling layers in roller-compacted concrete (RCC) dam automatically was presented. First, a conceptual model was developed. Second, by using a computational geometry method, the auto identific...A scheme for identifying rolling layers in roller-compacted concrete (RCC) dam automatically was presented. First, a conceptual model was developed. Second, by using a computational geometry method, the auto identification of rolling layers and auto matching between rolling compaction machines and rolling layers were realized based on spatial control points. An application to the construction of Guandi RCC dam showed that the auto identification of rolling layers played an important role in ensuring the engineering quality.展开更多
This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dep...This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.展开更多
Concrete dams are reliable when subjected to static loads such as earth pressure and water pressure.However,the dam failure would be abrupt and catastrophic if it is impacted by boulders.This study simulated the dynam...Concrete dams are reliable when subjected to static loads such as earth pressure and water pressure.However,the dam failure would be abrupt and catastrophic if it is impacted by boulders.This study simulated the dynamic response of flat dam,concave dam,and convex dam under the impact of boulders by using ANSYS/LS-DYNA finite element software.In the numerical simulation,the strain rate effect under the impact load is considered,and Holmquist-Johnson-Cook(HJC)model-a dynamic damage constitutive model is applied to concrete materials.Results show that the peak impact force of concave dam is minimum.Meanwhile,for different dam types(flat dam,concave dam,and convex dam)and impactor velocities(5,10,and 15 m/s),the impact force fluctuates with the height of the impact point and it reaches the maximum value when the height of the impact point is 2/3 of the dam height.Numerical simulation mainly considers different masses and velocities and obtains empirical formulae of impact force for three dam types.The established empirical formula for the flat dam is compared with the existing classical formula and several similar experimental tests.It was found that the newly empirical formulae are reasonable and effective,and it provides design suggestions for similar concrete dams.展开更多
The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by...The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by use of series-wound and shunt-wound connection. Some methods were proposed to determine the instantaneous Young's modulus, delayed Young's modulus and viscosity coefficient of effect zones of layer face. Above models and methods were used to mine the principle of gradual change of key calculation parameters which can response the characteristics of effect zones. The principle of gradual change was described. A model was established to analyze the threedimensional viscoelastic problem of RCC dam. Above programs were developed. The examples show that the proposed models and methods to determine the key calculation parameters of effect zones can reflect the status of RCC dam accurately.展开更多
To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring art...To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.展开更多
Methods for identifying sub-regional material parameters of concrete damsusing incomplete rnodal data are presented. With the measurements of the first frequency andincomplete mode shape, identification methods were b...Methods for identifying sub-regional material parameters of concrete damsusing incomplete rnodal data are presented. With the measurements of the first frequency andincomplete mode shape, identification methods were built by both the output error approach and theminimum deviation approach. The minimum deviation approach was introduced as physical constraints tothe output error approach, allowing the output error-minimum deviation coupled approach to bedeveloped. The simulated annealing-simplex shape algorithm was applied to solve the identificationmodels. Numerical simulations were carried out with noisy incomplete measurements to illustrate therobustness of the methods.展开更多
The safety of large structures requires adequate foundations, which implies a good knowledge of the geological and geotechnical conditions of the respective ground. In general, that is only possible through engineerin...The safety of large structures requires adequate foundations, which implies a good knowledge of the geological and geotechnical conditions of the respective ground. In general, that is only possible through engineering geological studies which include proper site investigation techniques, adapted to the nature of the ground (rock mass or soil) and to the associated engineering problems. The paper illustrates the studies carried out for the design of the foundations of Ribeiradio 76 m high concrete gravity dam in a difficult rock mass and of Vasco da Gama Bridge, 13 km long, crossing the Tagus River in Lisbon, Portugal, through piles 75 m deep.展开更多
Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformati...Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformation, loads and restraints around dam. With time going by, damage to darn concrete happens. As a result, the strength, stiffness and resistance of concrete will decrease accompanying with damage accumulation and dam structure performance behavior and lifetime will be shorten or even destructed. At present, most of researches focus on concrete material itself and seldom consider effects of water content for concrete structures. That is apparently inconsistent with the actual situation. In engineering practice, it is urgently needed to assess existing dam structure damage state considering dry zoning in concrete. Through taking C30 dam concrete as standard specimen, alternate freezing and thawing tests are undertaken and changing law of time-dependent concrete damage state resulting in alternate wetting and drying has been studied in this paper. And then calculation formulas of time-dependent concrete damage evolution process considering alternate wetting and drying under condition of freeze-thaw cycle tests are established. Combining with four parameters Hsieh-Ting-Chen ( H -T-C ) model, some relevant factors or parameters are obtained through indoor testing and life prediction model of concrete dam based on dry zoning and damage theory is put forward which provides technical supports for dam safety evaluation and management of sustainable development.展开更多
To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loa...To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loads. A device was deployed for a direct measurement of the impact force at the upstream face of the dams. The model dam bases were anchored to prevent displacement. The experimental results indicate that the top part of the concrete dam is a weak zone, and the impact failure initiates with a fracture on the top of the dam. The peak value of impact stress increases when the second crack appears in the concrete dam from the upstream face to the downstream face. And, the level of the second crack in the dam body is lower as the peak value of impact stress increases. In this study, dynamic analysis was conducted by calculating the results to verify the effectiveness of a device to directly measure the impact force. This method may be used to approximately forecast the damage of concrete dam and may also be useful in other engineering applications.展开更多
The research object was high 120 m concrete gravity dam of the Angara Bratsk hydroelectric power plant. The state of the concrete dam is estimated based on the results of continuous supervision performed by site perso...The research object was high 120 m concrete gravity dam of the Angara Bratsk hydroelectric power plant. The state of the concrete dam is estimated based on the results of continuous supervision performed by site personnel as well as periodic monitoring. According to the classification of the interrelations in the system "concrete-environment", there were selected some important parts of dams and a comprehensive analysis of concrete was executed on these parts. Concerning the complex research of concrete, a combination of full-scale tests with core-sampling has been proposed. Core samples tests had an object to study the deep concrete layers and to determine the specific indicators such as strength, density, porosity, comparative diameter of capillary pores, CaO content in cement stone and others. Obtained findings and recommended criteria can be applied when selecting technologies for constructing dams that guarantee their durability in the north.展开更多
The concept and realization process of intelligent compaction for the construction of high roller compacted concrete dam were presented, as well as the theory of monitoring and intelligent feedback control. Based on t...The concept and realization process of intelligent compaction for the construction of high roller compacted concrete dam were presented, as well as the theory of monitoring and intelligent feedback control. Based on the real-time analysis of the compaction index, a multiple regression model of the dam compactness was established and a realime estimation method of compaction quality for the entire work area of roller compacted concrete dam was proposed finally. The adaptive adjustment of the roiling process parameters was achieved, with the speed, the exciting force, the roller pass and the compaction thickness meeting the standards during the whole construction process. As a result, the compaction quality and construction efficiency can be improved. The research provides a new way for the construction quality control of roller compacted concrete dam.展开更多
Disaster-resilient dams require accurate crack detection,but machine learning methods cannot capture dam structural reaction temporal patterns and dependencies.This research uses deep learning,convolutional neural net...Disaster-resilient dams require accurate crack detection,but machine learning methods cannot capture dam structural reaction temporal patterns and dependencies.This research uses deep learning,convolutional neural networks,and transfer learning to improve dam crack detection.Twelve deep-learning models are trained on 192 crack images.This research aims to provide up-to-date detecting techniques to solve dam crack problems.The finding shows that the EfficientNetB0 model performed better than others in classifying borehole concrete crack surface tiles and normal(undamaged)surface tiles with 91%accuracy.The study’s pre-trained designs help to identify and to determine the specific locations of cracks.展开更多
The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its f...The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.展开更多
Owing to the deficiency in early warning for high concrete dam,a formula was established to characterize the deformation behavior of high concrete dam as a whole.The early warning index of spatial deformation was calc...Owing to the deficiency in early warning for high concrete dam,a formula was established to characterize the deformation behavior of high concrete dam as a whole.The early warning index of spatial deformation was calculated by low probability principle on the basis of the deformation entropy formula proposed.The steps were as follows.Firstly,the probability method was utilized to define the degree of order and degree of chaos for each survey point.Secondly,the weight distribution among the survey points was calculated by projection pursuit analysis.Thirdly,the formula of holistic deformation entropy,which can represent the degree of order of high concrete dam,was established on the basis of synergetics and information entropy.Lastly,the early warning index of deformation entropy was computed by low probability method based on series of calculated deformation entropy values.An example showed that the dynamic property of deformation entropy is in accordance with both environmental variables and deflection deformation.Moreover,deformation entropy can be used to improve warning ability and safety management for high concrete dam.展开更多
A method of the fuzzy cross-correlation factor exponent in dynamics is researched and proposed to diagnose abnormality of cracks in the concrete dam. Moreover, the Logistic time series changing from period-doubling bi...A method of the fuzzy cross-correlation factor exponent in dynamics is researched and proposed to diagnose abnormality of cracks in the concrete dam. Moreover, the Logistic time series changing from period-doubling bifurcation to chaos is tested first using this method. Results indicate that it can distinguish inherent dynamics of time series and can detect mutations. Considering that cracks in the concrete dam constitute an open, dissipative and complex nonlinear dynamical system, a typical crack on the downstream face of a concrete gravity arch dam is analyzed with the proposed method. Two distinct mutations are discovered to indicate that the abnormality diagnosis of cracks in the concrete dam is achieved dynamically through this method. Furthermore, because it can be directly utilized in the measured crack opening displacement series to complete abnormality diagnosis, it has a good prospect for practical applications.展开更多
文摘Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field.
基金Projects(51139001,51179066,51079046,50909041) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0359) supported by the Program for New Century Excellent Talents in UniversityProjects(2009586012,2009586912,2010585212)supported by the Special Fund of State Key Laboratory of China
文摘According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.
文摘China is a country of high seismicity with many hydropower resources. Recently,a series of high arch dams have either been completed or are being constructed in seismic regions,of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper,a brief introduction to major progress in the research on seismic aspects of large concrete dams,conducted mainly at the Institute of Water Resources and Hydropower Research(IWHR) during the past 60 years,is presented. The dam site-specific ground motion input,improved response analysis,dynamic model test verification,field experiment investigations,dynamic behavior of dam concrete,and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.
文摘An overview of the GeoSafe 2016 Symposium topic is provided using the example of large concrete dams for purposes of illustration.It is essential that the risks associated with large dams be evaluated rigorously and managed proactively at all stages of their lives so that the risk of failure remains As Low As Reasonably Practicable(ALARP).Rock engineering features of large concrete dams that require particular attention,assessment and monitoring during the investigation,design,construction,initial filling,inservice operation,and subsequent repair and upgrade stages of the lives of concrete dams are identified and illustrated by examples from recorded experiences.A number of major concrete dam failures,including that of the St.Francis dam,California,U.S.A.,in 1928,have led to significant developments in rock mechanics and rock engineering knowledge and techniques,as well as in dam design and review processes.More recent advances include a range of analytical,numerical modelling,probabilistic,reliability,failure mode and risk assessment approaches.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51709021,52079120)the project funded by China Postdoctoral Science Foundation(Grant No.2020M670387)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019nkzd03).
文摘Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams.To connect laboratory test with numerical simulation,dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index,a deterioration model is established to predict the mechanical property of leached concrete in the first step.A coupled seepage-calcium dissolutionmigrationmodel containing two calculation modes is proposed to simulate the spatially non-uniformdeterioration of concrete dams.Based on the simulated state of a roller compacted concrete dam subjected to 100 years of seepage dissolution,seismic responses of the damare subsequently analyzed.During which the nonlinear cracking of concrete,the radiation damping of the far-field foundation is considered.Research results show that seepage dissolution will seriously weaken the seismic safety of concrete dams because of the dissolution-induced decrease of effective thickness of the dam body.The upstream surface,dam toe and gallery wall suffer from a large degree of dissolution,whereas it is minimal and basically the same inside the dam body,at a degree of 0.19%within 100 years.The horizontal displacements of dam crest under the design static load and fortification against earthquake increase by 6.9%and 21.9%,respectively,and the dissolution-induced seismic cracking leads to the failure of dam anti-seepage system.This study can provide engineers with a reference basis for reinforcement decision of old concrete dams.
基金Supported by Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51021004)National Natural Science Foundation of China (No. 50879056)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No. 2008BAB29B05)
文摘A scheme for identifying rolling layers in roller-compacted concrete (RCC) dam automatically was presented. First, a conceptual model was developed. Second, by using a computational geometry method, the auto identification of rolling layers and auto matching between rolling compaction machines and rolling layers were realized based on spatial control points. An application to the construction of Guandi RCC dam showed that the auto identification of rolling layers played an important role in ensuring the engineering quality.
基金supported by the National Natural Science Foundation of China (Grant No. 90510018)
文摘This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.
基金supported by the National Natural Science Foundation of China(Grant No.51778273)。
文摘Concrete dams are reliable when subjected to static loads such as earth pressure and water pressure.However,the dam failure would be abrupt and catastrophic if it is impacted by boulders.This study simulated the dynamic response of flat dam,concave dam,and convex dam under the impact of boulders by using ANSYS/LS-DYNA finite element software.In the numerical simulation,the strain rate effect under the impact load is considered,and Holmquist-Johnson-Cook(HJC)model-a dynamic damage constitutive model is applied to concrete materials.Results show that the peak impact force of concave dam is minimum.Meanwhile,for different dam types(flat dam,concave dam,and convex dam)and impactor velocities(5,10,and 15 m/s),the impact force fluctuates with the height of the impact point and it reaches the maximum value when the height of the impact point is 2/3 of the dam height.Numerical simulation mainly considers different masses and velocities and obtains empirical formulae of impact force for three dam types.The established empirical formula for the flat dam is compared with the existing classical formula and several similar experimental tests.It was found that the newly empirical formulae are reasonable and effective,and it provides design suggestions for similar concrete dams.
基金Project supported by the National Natural Science Foundation of China (Nos.50579010, 50539010)the National Basic Research Program of China (973 Program) (No.2002CB412707)the National Basic Research Program of Ministry of Water Resources, China (No.CT200612)
文摘The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by use of series-wound and shunt-wound connection. Some methods were proposed to determine the instantaneous Young's modulus, delayed Young's modulus and viscosity coefficient of effect zones of layer face. Above models and methods were used to mine the principle of gradual change of key calculation parameters which can response the characteristics of effect zones. The principle of gradual change was described. A model was established to analyze the threedimensional viscoelastic problem of RCC dam. Above programs were developed. The examples show that the proposed models and methods to determine the key calculation parameters of effect zones can reflect the status of RCC dam accurately.
基金Projects(20120094110005,20120094130003)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProjects(51379068,51139001,51279052,51209077,51179066)supported by the National Natural Science Foundation of China+1 种基金Project(NCET-11-0628)supported by the Program for New Century Excellent Talents in University,ChinaProjects(201201038,201101013)supported by the Public Welfare Industry Research Special Fund Project of Ministry of Water Resources of China
文摘To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.
文摘Methods for identifying sub-regional material parameters of concrete damsusing incomplete rnodal data are presented. With the measurements of the first frequency andincomplete mode shape, identification methods were built by both the output error approach and theminimum deviation approach. The minimum deviation approach was introduced as physical constraints tothe output error approach, allowing the output error-minimum deviation coupled approach to bedeveloped. The simulated annealing-simplex shape algorithm was applied to solve the identificationmodels. Numerical simulations were carried out with noisy incomplete measurements to illustrate therobustness of the methods.
文摘The safety of large structures requires adequate foundations, which implies a good knowledge of the geological and geotechnical conditions of the respective ground. In general, that is only possible through engineering geological studies which include proper site investigation techniques, adapted to the nature of the ground (rock mass or soil) and to the associated engineering problems. The paper illustrates the studies carried out for the design of the foundations of Ribeiradio 76 m high concrete gravity dam in a difficult rock mass and of Vasco da Gama Bridge, 13 km long, crossing the Tagus River in Lisbon, Portugal, through piles 75 m deep.
基金This research was supported by NSFC (National Natural Science Foundation of China) (Granted No.: 50909054, 50925933).
文摘Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformation, loads and restraints around dam. With time going by, damage to darn concrete happens. As a result, the strength, stiffness and resistance of concrete will decrease accompanying with damage accumulation and dam structure performance behavior and lifetime will be shorten or even destructed. At present, most of researches focus on concrete material itself and seldom consider effects of water content for concrete structures. That is apparently inconsistent with the actual situation. In engineering practice, it is urgently needed to assess existing dam structure damage state considering dry zoning in concrete. Through taking C30 dam concrete as standard specimen, alternate freezing and thawing tests are undertaken and changing law of time-dependent concrete damage state resulting in alternate wetting and drying has been studied in this paper. And then calculation formulas of time-dependent concrete damage evolution process considering alternate wetting and drying under condition of freeze-thaw cycle tests are established. Combining with four parameters Hsieh-Ting-Chen ( H -T-C ) model, some relevant factors or parameters are obtained through indoor testing and life prediction model of concrete dam based on dry zoning and damage theory is put forward which provides technical supports for dam safety evaluation and management of sustainable development.
基金The National Science Foundation of China under Grant No.51121005
文摘To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loads. A device was deployed for a direct measurement of the impact force at the upstream face of the dams. The model dam bases were anchored to prevent displacement. The experimental results indicate that the top part of the concrete dam is a weak zone, and the impact failure initiates with a fracture on the top of the dam. The peak value of impact stress increases when the second crack appears in the concrete dam from the upstream face to the downstream face. And, the level of the second crack in the dam body is lower as the peak value of impact stress increases. In this study, dynamic analysis was conducted by calculating the results to verify the effectiveness of a device to directly measure the impact force. This method may be used to approximately forecast the damage of concrete dam and may also be useful in other engineering applications.
文摘The research object was high 120 m concrete gravity dam of the Angara Bratsk hydroelectric power plant. The state of the concrete dam is estimated based on the results of continuous supervision performed by site personnel as well as periodic monitoring. According to the classification of the interrelations in the system "concrete-environment", there were selected some important parts of dams and a comprehensive analysis of concrete was executed on these parts. Concerning the complex research of concrete, a combination of full-scale tests with core-sampling has been proposed. Core samples tests had an object to study the deep concrete layers and to determine the specific indicators such as strength, density, porosity, comparative diameter of capillary pores, CaO content in cement stone and others. Obtained findings and recommended criteria can be applied when selecting technologies for constructing dams that guarantee their durability in the north.
基金National Natural Science Foundation of China (No. 51021004No. 51079096)the Program for New Century Excellent Talents in University (No. NCET-08-0391)
文摘The concept and realization process of intelligent compaction for the construction of high roller compacted concrete dam were presented, as well as the theory of monitoring and intelligent feedback control. Based on the real-time analysis of the compaction index, a multiple regression model of the dam compactness was established and a realime estimation method of compaction quality for the entire work area of roller compacted concrete dam was proposed finally. The adaptive adjustment of the roiling process parameters was achieved, with the speed, the exciting force, the roller pass and the compaction thickness meeting the standards during the whole construction process. As a result, the compaction quality and construction efficiency can be improved. The research provides a new way for the construction quality control of roller compacted concrete dam.
基金supported by the National Natural Science Foundation of China(Grant Nos.61972136,41874148,and 42174178)the Natural Science and Foundation of Hubei Province(No.2020CFB497)+4 种基金the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(Nos.T201410 and T2020017)the Natural Science Foundation of Education Department of Hubei Province(No.B2020149)the Science and Technology Research Project of the Education Department of Hubei Province(No.Q20222704)Natural Science Foundation of Xiaogan City(Nos.XGKJ2022010095 and XGKJ2022010094)The funding is a foreign expert project of Henan Province(No.HNGD2023027).
文摘Disaster-resilient dams require accurate crack detection,but machine learning methods cannot capture dam structural reaction temporal patterns and dependencies.This research uses deep learning,convolutional neural networks,and transfer learning to improve dam crack detection.Twelve deep-learning models are trained on 192 crack images.This research aims to provide up-to-date detecting techniques to solve dam crack problems.The finding shows that the EfficientNetB0 model performed better than others in classifying borehole concrete crack surface tiles and normal(undamaged)surface tiles with 91%accuracy.The study’s pre-trained designs help to identify and to determine the specific locations of cracks.
文摘The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.
基金supported by the National Natural Science Foundation of China (Grant No 50589025)the National Key Technology R&D Program (Grant No 2008BAB29B03)the Research Foundation of Education Bureau of Hunan Province, China (Grant No 09C087)
文摘Owing to the deficiency in early warning for high concrete dam,a formula was established to characterize the deformation behavior of high concrete dam as a whole.The early warning index of spatial deformation was calculated by low probability principle on the basis of the deformation entropy formula proposed.The steps were as follows.Firstly,the probability method was utilized to define the degree of order and degree of chaos for each survey point.Secondly,the weight distribution among the survey points was calculated by projection pursuit analysis.Thirdly,the formula of holistic deformation entropy,which can represent the degree of order of high concrete dam,was established on the basis of synergetics and information entropy.Lastly,the early warning index of deformation entropy was computed by low probability method based on series of calculated deformation entropy values.An example showed that the dynamic property of deformation entropy is in accordance with both environmental variables and deflection deformation.Moreover,deformation entropy can be used to improve warning ability and safety management for high concrete dam.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079046, 50909041, 50809025, 50879024)the National Science and Technology Support Plan (Grant Nos. 2008BAB29B03, 2008BAB29B06)+7 种基金the Special Fund of State Key Laboratory of China (Grant Nos. 2009586012, 2010585212)the Fundamental Research Funds for the Central Universities (Grant Nos. 2009B08514, 2010B20414, 2010B14114)China Hydropower Engineering Consulting Group Co. Science and Technology Support Project (Grant No. CHC-KJ-2007-02)Jiangsu Province "333 High-Level Personnel Training Project" (Grant No. 2017-B08037)the Natural Science Foundation of Hohai University (Grant No. 2008426811)Graduate Innovation Program of Universities in Jiangsu Province (Grant No. CX09B_163Z)the Science Foundation for The Excellent Youth Scholars of Ministry of Education of China (Grant No. 20070294023)Dominant Discipline Construction Program Funded Projects of Universities in Jiangsu Province
文摘A method of the fuzzy cross-correlation factor exponent in dynamics is researched and proposed to diagnose abnormality of cracks in the concrete dam. Moreover, the Logistic time series changing from period-doubling bifurcation to chaos is tested first using this method. Results indicate that it can distinguish inherent dynamics of time series and can detect mutations. Considering that cracks in the concrete dam constitute an open, dissipative and complex nonlinear dynamical system, a typical crack on the downstream face of a concrete gravity arch dam is analyzed with the proposed method. Two distinct mutations are discovered to indicate that the abnormality diagnosis of cracks in the concrete dam is achieved dynamically through this method. Furthermore, because it can be directly utilized in the measured crack opening displacement series to complete abnormality diagnosis, it has a good prospect for practical applications.