期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
EFFECT OF DISPERSED PHASE PARTICLES ON ELECTRICAL CONDUCTION OF PEO-NaSCN
1
《Chemical Research in Chinese Universities》 SCIE CAS 1986年第1期97-101,共5页
Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast... Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast ionic conductor.For a long time materialists and chemists have made great efforts in search of new fast ionic conductors with high ionic conductivity.In view of structure,they have synthesised silver and copper fast ionic conductors with so called open structures.But it is not so successful for searching more applicable alkaline fast ionic conductors.Since polymer has flexibility for making thin film,it concentrates attention on the polymer-alkaline salt complex.Fenton et al.have first reported poly(ethylene oxide) (PEO)-alkaline salt complex.Later on Armard et al.have investigated the electrical property of PEO-NaSCN. 展开更多
关键词 OC PEO effect OF DISPERSED PHASE PARTICLES ON ELECTRICAL conduction OF PEO-NaSCN
下载PDF
Suppressing Effects of Ag Wetting Layer on Surface Conduction of Er Silicide/Si(001) Nanocontacts
2
作者 Qing Han Qun Cai 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第8期74-78,共5页
Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on... Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts. 展开更多
关键词 AG Suppressing effects of Ag Wetting Layer on Surface conduction of Er Silicide/Si NANOCONTACTS
下载PDF
Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment
3
作者 Cunning Wang Xingxun Li +2 位作者 Qingping Li Guangjin Chen Changyu Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期176-188,共13页
The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The th... The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The thermal conductivity of hydrate is of great significance for the hydrate-related field,such as the natural gas hydrate exploitation and prevention of the hydrate plugging in oil or gas pipelines.In order to obtain a comprehensive understanding of the research progress of the hydrate thermal conductivity and the ETC of hydrate-bearing sediment,the literature on the studies of the thermal conductivity of hydrate and the ETC of hydrate-bearing sediment were summarized and reviewed in this study.Firstly,experimental studies of the reported measured values and the temperature dependence of the thermal conductivity of hydrate were discussed and reviewed.Secondly,the studies of the experimental measurements of the ETC of hydrate-bearing sediment and the effects of temperature,porosity,hydrate saturation,water saturation,thermal conductivity of porous medium,phase change,and other factors on the ETC of hydrate-bearing sediment were discussed and reviewed.Thirdly,the research progress of modeling on the ETC of the hydrate-bearing sediment was reviewed.The thermal conductivity determines the heat transfer capacity of the hydrate reservoir and directly affects the hydrate exploitation efficiency.Future efforts need to be devoted to obtain experimental data of the ETC of hydrate reservoirs and establish models to accurately predict the ETC of hydrate-bearing sediment. 展开更多
关键词 HYDRATE Thermal conductivity Hydrate-bearing sediment Preparation method effective thermal conductivity MODEL
下载PDF
Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
4
作者 郑坤灿 李震东 +2 位作者 曹豫通 刘犇 胡君磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期28-36,共9页
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma... Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae. 展开更多
关键词 silica aerogel effective thermal conductivity two pore-size structure model porous medium heat transfer
下载PDF
Study of the generalized mixture rule for determining effective conductivity of two-phase stochastic models 被引量:1
5
作者 余勇 吴小平 《Applied Geophysics》 SCIE CSCD 2010年第3期210-216,292,共8页
The generalized mixture rule (GMR) is usually applied in determining mechanical properties such as the rheological property and Young’s modulus of multi-phase rocks. However, it is rarely used to determine electric... The generalized mixture rule (GMR) is usually applied in determining mechanical properties such as the rheological property and Young’s modulus of multi-phase rocks. However, it is rarely used to determine electrical conductivity of multi-phase rocks presently. In this paper, we calculate the effective conductivity using the 3D finite element method for a large number of two-phase medium stochastic models. The GMR is then employed as an effective conductivity model to fit the data. It shows a very close relationship between the parameter J of GMR and the ratio of conductivities of the two phases. We obtain the equations of the parameter J with the ratio of conductivity of two phases for the first time. On this basis, we can quickly predict (or calculate) the effective conductivity of any twophase medium stochastic model. The result is much more accurate than two other available effective conductivity models for the stochastic medium, which are the random model and effective medium theory model, laying a solid base for detailed evaluation of oil reservoirs. 展开更多
关键词 Generalized mixture rule two-phase media effective conductivity
下载PDF
A Novel Approach for the Effective Thermal Conductivity of Porous Ceramics 被引量:8
6
作者 ZHU Qiang ZHANG Fan-wei +2 位作者 ZHANG Yue ZHANG Da-hai LI Zhong-ping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期244-247,共4页
A new approach in combination of the effective medium theory with the equivalent unit in numerical simulation was developed to study the effective thermal conductivity of porous ceramics. The finite element method was... A new approach in combination of the effective medium theory with the equivalent unit in numerical simulation was developed to study the effective thermal conductivity of porous ceramics. The finite element method was used to simulate the heat transfer process which enables to acquire accurate results through highly complicated modeling and intensive computation. An alternative approach to mesh the material into small cells was also presented. The effective medium theory accounts for the effective thermal conductivity of cells while the equivalent unit is subsequently applied in numerical simulation to analyze the effective thermal conductivity of the porous ceramics. A new expression for the effective thermal conductivity, allowing for some structure factors such as volume fraction of pores and thermal conductivity, was put forward, and the results of its application was proved to be close to those of the mathematical simulation. 展开更多
关键词 effective thermal conductivity porous ceramics equivalent unit numerical simulation
下载PDF
Random checkerboard based homogenization for estimating effective thermal conductivity of fully saturated soils 被引量:4
7
作者 Dariusz Lydzba Adrian Rózanski +1 位作者 Magdalena Rajczakowska Damian Stefaniuk 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期18-28,共11页
This paper proposes homogenization scheme for estimating the effective thermal conductivity of fully saturated soils. This approach is based on the random checkerboard-like microstructure. Two modeling scales and two ... This paper proposes homogenization scheme for estimating the effective thermal conductivity of fully saturated soils. This approach is based on the random checkerboard-like microstructure. Two modeling scales and two modeling approaches are distinguished and used, i.e. microscale and mesoscale and 1-step and 2-step homogenizations, respectively. The 2-step homogenization involves sequential averaging procedure, i.e. first, at microscale, a mineralogical composition of soil skeleton is considered and averaging process results in estimation of the skeleton effective thermal conductivity, and then, at mesoscale, a random spatial packing of solid skeleton and pores via random checkerboard microstructure is modeled and leads to evaluation of the soil overall thermal conductivity. The 1-step homogenization starts directly at the mesoscale and homogenization procedure yields evaluation of the overall soil thermal conductivity. At the mesoscale, the distinct nature of soil skeleton, as composed of soil separates,is considered and random variability of soil is modeled via enriched random checkerboard-like structure.Both approaches, i.e. 1-step and 2-step homogenizations, interrelate mineralogical composition with the soil texture characterized by the volume fractions of soil separates, i.e. sand, silt and clay. The probability density functions(PDFs) of thermal conductivity are assumed for each of the separates. The soil texture PDF of thermal conductivity is derived taking into consideration the aforementioned functions. Whenever the random checkerboard-like structure is used in averaging process, the Monte Carlo procedure is applied for estimation of homogenized thermal conductivity. Finally, the proposed methodology is tested against the laboratory data from our measurements as well as those available from literature. 展开更多
关键词 Soil mechanics MICROMECHANICS effective thermal conductivity
下载PDF
Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas 被引量:1
8
作者 Wei YANG Fei GAO Younian WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期118-133,共16页
A numerical model is developed to study the conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled argon plasmas at pressures of 0.1-20 Pa.The model con... A numerical model is developed to study the conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled argon plasmas at pressures of 0.1-20 Pa.The model consists of electron kinetics module,electromagnetics module,and global model module.It allows for self-consistent description of non-local electron kinetics and collisionless electron heating in terms of the conductivity of homogeneous hot plasma.Simulation results for non-local conductivity case are compared with predictions for the assumption of local conductivity case.Electron densities and effective electron temperatures under non-local and local conductivities show obvious differences at relatively low pressures.As increasing pressure,the results under the two cases of conductivities tend to converge,which indicates the transition from collisionless to collisional regimes.At relatively low pressures the local negative power absorption is predicted by non-local conductivity case but not captured by local conductivity case.The two-dimensional(2D)profiles of electron current density and electric field are coincident for local conductivity case in the pressure range of interest,but it roughly holds true for non-local conductivity case at very high pressure.In addition,an effective conductivity with consideration of non-collisional stochastic heating effect is introduced.The effective conductivity almost reproduces the electron density and effective electron temperature for the non-local conductivity case,but does not capture the non-local relation between electron current and electric field as well as the local negative power absorption that is observed for nonlocal conductivity case at low pressures. 展开更多
关键词 inductively coupled plasmas conductivity effects electron kinetics plasma parameters electromagnetic wave characteristics ELECTRODYNAMICS
下载PDF
Thermal performance analysis of borehole size effect on geothermal heat exchanger 被引量:2
9
作者 CHOI Hoon-ki YOO Geun-jong +2 位作者 LIM Kyung-bin LEE Sang-hoon LEE Chang-hee 《Journal of Central South University》 SCIE EI CAS 2012年第12期3524-3529,共6页
Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat... Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics. 展开更多
关键词 large size borehole heat exchanger thermal response test effective thermal conductivity thermal resistance BOREHOLE
下载PDF
Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay 被引量:4
10
作者 Thanh Danh Tran Yu-Jun Cui +2 位作者 Anh Minh Tang Martine Audiguier Roger Cojean 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期399-404,共6页
This study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivityof a compacted expansive clay, with emphasis put on the effect of lime hydration and modification.For this pu... This study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivityof a compacted expansive clay, with emphasis put on the effect of lime hydration and modification.For this purpose, evolutions of hydraulic conductivity were investigated for both lime-treatedand untreated soil specimens over 7 d after full saturation of the specimens and their microstructureswere observed at the end. Note that for the treated specimen, dry clay powder was mixed with quicklimeprior to compaction in order to study the effect of lime hydration. It is observed that lime hydration andmodification did not affect the intra-aggregate pores but increased the inter-aggregates pores size. Thisincrease gave rise to an increase of hydraulic conductivity. More precisely, the hydraulic conductivity oflime-treated specimen increased progressively during the first 3 d of modification phase and stabilisedduring the next 4 d which correspond to a short period prior to the stabilisation phase. The microstructureobservation showed that stabilisation reactions took place after 7 d. Under the effect of stabilisation,a decreasing hydraulic conductivity can be expected in longer time due to the formation ofcementitious compounds. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Clays Lime hydration Hydraulic conductivity Microstructure Temperature effect
下载PDF
A Fractal Model for the Effective Thermal Conductivity of Granular Flow with Non—uniform Particles 被引量:1
11
作者 ZHANGDuan-Ming LEIYa-Jie 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第2期231-236,共6页
The equipartition of energy applied in binary mixture of granular flow is extended to granular flow withnon-uniform particles. Based on the fractal characteristic of granular flow with non-uniform particles as well as... The equipartition of energy applied in binary mixture of granular flow is extended to granular flow withnon-uniform particles. Based on the fractal characteristic of granular flow with non-uniform particles as well as energyequipartition, a fractal velocity distribution function and a fractal model of effective thermal conductivity are derived.Thermal conduction resulted from motions of particles in the granular flow, as well as the effect of fractal dimension oneffective thermal conductivity, is discussed. 展开更多
关键词 FRACTAL effective thermal conductivity granular flow
下载PDF
A THEORY OF EFFECTIVE THERMAL CONDUCTIVITY FOR MATRIX-INCLUSION-MICROCRACK THREE-PHASE HETEROGENEOUS MATERIALS BASED ON MICROMECHANICS 被引量:1
12
作者 Zhang, QJ Zhai, PC Li, Y 《Acta Mechanica Solida Sinica》 SCIE EI 2000年第2期179-187,共9页
The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element meth... The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element method(RMFEM). In the SCM, microcracks are assumed to be randomly distributed and penny-shaped and inclusions to be spherical, the crack effect is accounted for by introducing a crack density parameter, the effective thermal conductivity is derived which relates the macroscopic behavior to the crack density parameter. In the RMFEM, the highly irregular microstructure of the heterogeneous media is accurately described, the interaction among the matrix-inclusion-microcracks is exactly treated, the inclusion shape effect and crack size effect are considered. A Ni/ZrO2 particulate composite material containing randomly distributed, penny-shaped cracks is examined as an example. The main results obtained are: (1) the effective thermal conductivity is sensitive to the crack density and exhibits essentially a linear relationship with the density parameter: (2) the inclusion shape has a significant effect on the effective thermal conductivity and a polygon-shaped inclusion is more effective in increasing or decreasing the effective thermal conductivity than a sphere-shaped one; and (3) the SCM and RMFEM are compared and the two methods give the same effective property in the case in which the matrix thermal conductivity A, is greater than the inclusion one lambda(2). In the inverse case of lambda(1) < lambda(2), the two methods as the as the inclusion volume fraction and crack density are low and differ as they are high. A reasonable explanation for the agreement and deviation between the two methods in the case of lambda(1) < lambda(2) is made. 展开更多
关键词 effective thermal conductivity heterogeneous materials MICROCRACKS MICROMECHANICS
下载PDF
Effects of Metal Absorber Thermal Conductivity on Clear Plastic Laser Transmission Welding 被引量:3
13
作者 Min-Qiu Liu De-Qin Ouyang +2 位作者 Chun-Bo Li Hui-Bin Sun Shuang-Chen Ruan 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第10期44-48,共5页
In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four me... In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity. 展开更多
关键词 ab effects of Metal Absorber Thermal Conductivity on Clear Plastic Laser Transmission Welding
下载PDF
Numerical Predictions of the Effective Thermal Conductivity of the Rigid Polyurethane Foam 被引量:2
14
作者 方文振 TANG Yuqing +1 位作者 ZHANG Hu 陶文铨 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期703-708,共6页
A reconstruction method is proposed for the polyurethane foam and then a complete numerical method is developed to predict the effective thermal conductivity of the polyurethane foam. The finite volume method is appli... A reconstruction method is proposed for the polyurethane foam and then a complete numerical method is developed to predict the effective thermal conductivity of the polyurethane foam. The finite volume method is applied to solve the 2D heterogeneous pure conduction. The lattice Boltzmann method is adopted to solve the 1D homogenous radiative transfer equation rather than Rosseland approximation equation. The lattice Boltzmann method is then adopted to solve 1D homogeneous conduction-radiation energy transport equation considering the combined effect of conduction and radiation. To validate the accuracy of the present method, the hot disk method is adopted to measure the effective thermal conductivity of the polyurethane foams at different temperature. The numerical results agree well with the experimental data. Then, the influences of temperature, porosity and cell size on the effective thermal conductivity of the polyurethane foam are investigated. The results show that the effective thermal conductivity of the polyurethane foams increases with temperature; and the effective thermal conductivity of the polyurethane foams decreases with increasing porosity while increases with the cell size. 展开更多
关键词 polyurethane foam effective thermal conductivity lattice Boltzmann method radiation hot disk
下载PDF
Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs 被引量:3
15
作者 Wenbin Wang Xiaohu Yang +3 位作者 Bin Han Qiancheng Zhang Xiangfei Wang Tianjian Lu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第2期69-75,共7页
A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH,... A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation. 展开更多
关键词 effective thermal conductivityPrismatic cellular metal honeycombLigament heat conduction efficiencyAnalytical designEquivalent interaction angle
下载PDF
Effective Thermal Conductivity with Convection and Radiation in Packed Bed 被引量:1
16
作者 Yusuke Asakuma Tsuyoshi Yamamoto 《Journal of Energy and Power Engineering》 2013年第4期639-646,共8页
Effective thermal conductivity with convection and radiation is analyzed by the homogenization method. This method can precisely represent the microstructure of a packed bed. In this study, the effects of parameters s... Effective thermal conductivity with convection and radiation is analyzed by the homogenization method. This method can precisely represent the microstructure of a packed bed. In this study, the effects of parameters such as the radiation emissivity, temperature, contact area and particle size of the packed bed on the conductivity have been estimated. For example, heat transfer by radiation does not dominate if the material has voids of less than l mm in size. Moreover, the effects of contact area and pressure on effective thermal conductivity are negligible for thermal radiation. By considering the microscopic behavior of a packed bed, the homogenization method is thus a powerful tool for estimating the bed's effective thermal conductivity. 展开更多
关键词 effective thermal conductivity homogenization method multiscale analysis MICROSTRUCTURE thermal radiation.
下载PDF
Two-step homogenization for the effective thermal conductivities of twisted multi-filamentary superconducting strand
17
作者 Yongbin WANG Huadong YONG Youhe ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第5期689-708,共20页
For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand,a two-step homogenization method is adopted.Based on the distribution of filaments,the superc... For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand,a two-step homogenization method is adopted.Based on the distribution of filaments,the superconducting strand can be decomposed into a set of concentric cylinder layers.Each layer is a two-phase composite composed of the twisted filaments and copper matrix.In the first step of homogenization,the representative volume element(RVE)based finite element(FE)homogenization method with the periodic boundary condition(PBC)is adopted to evaluate the effective thermal conductivities of each layer.In the second step of homogenization,the generalized self-consistent method is used to obtain the effective thermal conductivities of all the concentric cylinder layers.The accuracy of the developed model is validated by comparing with the local and full-field FE simulation.Finally,the effects of the twist pitch on the effective thermal conductivities of twisted multi-filamentary superconducting strand are studied. 展开更多
关键词 superconducting strand multi-filamentary two-step homogenization effective thermal conductivity
下载PDF
A Prediction Model of Effective Thermal Conductivity for Metal Powder Bed in Additive Manufacturing
18
作者 Yizhen Zhao Hang Zhang +2 位作者 Jianglong Cai Shaokun Ji Dichen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期67-77,共11页
In current research,many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model,Compact Model and NLS criterion et al.However,there is still a question... In current research,many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model,Compact Model and NLS criterion et al.However,there is still a question that has not been well explained yet.That is:What is the core factors affecting the thermal conductivity of particles?In this paper,based on the coupled discrete element-finite difference(DE-FD)method and spherical aluminum powder,the relationship between the parameters and the thermal conductivity of the powder(ETC_(p))is studied.It is found that the key factor that can described the change trend of ETC_(p) more accurately is not the materials of the powder but the average contact area between particles(a_(ave))which also have a close nonlinear relationship with the average particle size d_(50).Based on this results,the expression for calculating the ETC_(p) of the sphere metal powder is successfully reduced to only one main parameter d_(50)and an efficient calculation model is proposed which can applicate both in room and high temperature and the corresponding error is less than 20.9%in room temperature.Therefore,in this study,based on the core factors analyzation,a fast calculation model of ETC_(p) is proposed,which has a certain guiding significance in the field of thermal field simulation. 展开更多
关键词 POWDER effective thermal conductivity Calculation model Thermal field simulation
下载PDF
Effective thermal conductivity of wire-woven bulk Kagome sandwich panels
19
作者 Xiaohu Yang Jiaxi Bai +2 位作者 Ki-Ju Kang Tianjian Lu Tongbeum Kim 《Theoretical & Applied Mechanics Letters》 CAS 2014年第5期60-66,共7页
Thermal transport in a highly porous metallic wire-woven bulk Kagome (WBK) is numerically and analytically modeled. Based on topology similarity and upon introducing an elongation parameter in thermal tortuosity, an... Thermal transport in a highly porous metallic wire-woven bulk Kagome (WBK) is numerically and analytically modeled. Based on topology similarity and upon introducing an elongation parameter in thermal tortuosity, an idealized Kagome with non-twisted struts is employed. Special focus is placed upon quanti- fying the effect of topological anisotropy of WBK upon its effective conductivity. It is demonstrated that the effective conductivity reduces linearly as the poros- ity increases, and the extent of the reduction is significantly dependent on the orientation of WBK. The governing physical mechanism of anisotropic thermal transport in WBK is found to be the anisotropic thermal tortuosity caused by the intrinsic anisotropic topology of WBK. 展开更多
关键词 effective thermal conductivity wire-woven bulk Kagome ANISOTROPY analyticalmodel
下载PDF
Characteristic analysis of bleeding effect on standing column well (SCW) type geothermal heat exchanger
20
作者 CHOI Hoon-ki YOO Geun-jong +2 位作者 LIM Kyung-bin LEE Sang-hoon LEE Chang-hee 《Journal of Central South University》 SCIE EI CAS 2012年第11期3202-3207,共6页
Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operat... Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operating conditions such as bleeding.This eventually determines the operation and cost efficiency of the borehole heat exchanger system.The thermal performance of an open standing column well (SCW) type geothermal heat exchanger was assessed under the influence of bleeding.For this,a thermal response test rig was established with line-source theory.The test rig also had a bleeding function by releasing fluid while taking additional underground water through the heat exchanger.The thermal response test was performed with an additional constant input heat source.Effective thermal conductivity and thermal resistance were obtained from the measured data.From the measurement,the effective thermal conductivity is found to have 1.47 times higher value when bleeding is applied.The thermal resistance also increases by 1.58 times compared to a non-bleeding case.This trend indicates enhanced heat transfer in the SCW type heat exchanger with a bleeding function.Bleeding,therefore,could be an effective method of achieving a high heat transfer rate in the SCW type heat exchanger with sufficient underground water supply. 展开更多
关键词 standing column well type thermal response test effective thermal conductivity thermal resistance bleeding effect
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部