Nanosized NaY crystals have been prepared from metakaolin and sodium silicate by confined space synthesis with starch additive. It is found that the product has a narrow crystal size distribution (50-100 nm), high Si...Nanosized NaY crystals have been prepared from metakaolin and sodium silicate by confined space synthesis with starch additive. It is found that the product has a narrow crystal size distribution (50-100 nm), high Si/Al ratio (Si/Al=4.6-6.1), high surface area (1090 m2/g) and the average diameter of nanosized NaY (75 nm) synthesized is 30 nm, it is smaller than that of without starch additive.展开更多
In response to the demand for short-range detection of anti-smoke environment interference by laser fuzes,this study proposes a smoke environment simulation of non-uniform continuous point source diffusion and investi...In response to the demand for short-range detection of anti-smoke environment interference by laser fuzes,this study proposes a smoke environment simulation of non-uniform continuous point source diffusion and investigates an experimental laboratory smoke environment using an ammonium chloride smoke agent.The particle size distribution,composition,and mass flow distribution of the smoke were studied.Based on a discrete phase model and a kεturbulence model,a numerical simulation was developed to model the smoke generation and diffusion processes of the smoke agent in a confined space.The temporal and spatial distribution characteristics of the smoke mass concentration,velocity,and temperature in the space after smoke generation were analyzed,and the motion law governing the smoke diffusion throughout the entire space was summarized.Combined with the experimental verification of the smoke environment laboratory,the results showed that the smoke plume changed from fan-shaped to umbrella-shaped during smoke generation,and then continued to spread around.Meanwhile,the mass concentration of smoke in the space decreased from the middle outward;the changes in temperature and velocity were small and stable.In the diffusion stage(after 900 s),the mass concentration of smoke above 0.8 m was relatively uniform across an area of smoke that was 12 m thick.The concentration decreased over time,following a consistent decreasing trend,and the attenuation was negligible in a very short time.Therefore,this system was suitable for conducting experimental research on laser fuzes in a smoke environment.Owing to the stability of the equipment and facilities,the setup could reproduce the same experimental smoke environment by artificially controlling the smoke emission of the smoke agent.Overall,this work provides a theoretical reference for subsequent research efforts regarding the construction of uniform smoke environments and evaluating laser transmission characteristics in smoky environments.展开更多
A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space b...A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.展开更多
One of the major hazards when working onboard Tankers is working in confined spaces, improving the procedures in working in such spaces is obvious, but developing the equipments used in rescue operation is rare to hap...One of the major hazards when working onboard Tankers is working in confined spaces, improving the procedures in working in such spaces is obvious, but developing the equipments used in rescue operation is rare to happen, that's why this paper is focusing on differentiating between the manual & more developed equipments used specially in rescuing the crew in such an adequate time, to save the workers' life. The manual way is called "MUCKY CRANE" which is used for rescue purposes onboard tankers, in any of the confined spaces, should be replaced by excel crane which is air or hydraulic driven machine, to achieve better results. As safety precautions measures taken in such tasks are not enough for the required objective achievement. Such safety procedures have been discussed and critical situations have been pointed out.展开更多
The detection of biomarkers with both high sensitivity and specificity is crucial for the diagnosis and treatment of related diseases.However,many current detections employ ex-situ detection method and non-confined co...The detection of biomarkers with both high sensitivity and specificity is crucial for the diagnosis and treatment of related diseases.However,many current detections employ ex-situ detection method and non-confined condition,thus have many problems,which may eventually lead to inaccurate detection results.Compared to detection in non-confined space,detection in confined space can better reflect the real in-vivo situation.Therefore,the construction of detection for target molecules in confined space has great significance for both theoretical research and practical application.To realize the detection of target molecules in confined space,the probes should accurately enter the confined space where the target molecules reside and interact with the interface.Thus,how to explore and utilize the properties of the interface(for example,bioinspired superwettability)has always been a hot and difficult topic in this field.Herein,the recent advances and our efforts in recent 10 years on detection of bio-target molecules in confined space with superwettable interface have been introduced from the perspective of the detection methods.The suitable and most widely employed detection methods for target molecules in confined spaces are introduced firstly.Then,recent progresses for related detections based on visual,optical,and electrochemical detection methods are presented successively.Finally,the perspective for detection in confined space is discussed for the future development of biochemical detection.展开更多
Lateral-confined coaxial jet diffusion flame is common in micro thrusters,and the specific impulse is mainly obtained through thermodynamic calculations with an assumption of fuel combustion with an equivalence ratio,...Lateral-confined coaxial jet diffusion flame is common in micro thrusters,and the specific impulse is mainly obtained through thermodynamic calculations with an assumption of fuel combustion with an equivalence ratio,regardless of the stability of the combustion process.However,the flame behavior plays an important impact on the performance of a micro thruster through the varied combustion efficiency.The stability of confined coaxial jet diffusion flames with air coflow was studied by experiments and numerical simulation.Methane,hydrogen,and propane were used as fuels.Flame attachment,liftoff,blowout(extinction limits of lifted flame),and blowoff(extinction limits of attached flame) behaviors with the effect of confinement ratios and fuel properties were focused on.Among the range of the jet flow velocity in this research,the hydrogen flame is always attached to the jet exit,the flame tip goes from closed to open as the jet velocity increases,while the flame transitions from attachment to liftoff in the case of CH_(4) and C_(3)H_(8) .Further,in a narrow confined space,the attached flame for both CH4 and C_(3)H_(8) undergoes liftoff followed by blowout.However,in a space with a high confinement ratio,the CH4 flame transitions directly from attachment to blowoff.The critical modified Craya-Curtet number,which is used to predict the onset of the recirculation,is determined through simulation and experiment,and the number is about 1.77.This work provides valuable data on flame stability inside a confined space and gives insights into the design of a thruster.展开更多
The accumulation of pollutants in the recirculation zone can worsen ventilation.It is critical to reduce recirculation zones to improve the ventilation efficiency of buildings.However,the variation rule of the recircu...The accumulation of pollutants in the recirculation zone can worsen ventilation.It is critical to reduce recirculation zones to improve the ventilation efficiency of buildings.However,the variation rule of the recirculation zone in a cylindrical confined space(CCS)is unclear,and there are few solutions to suppress or eliminate the recirculation zone at present.In this paper,an annular deflector orifice plate for suppressing the recirculation zone was developed based on the structural characteristics of the CCS.This device is simple in structure and can be used flexibly.Through experiments and numerical simulations,the variation rule of the recirculation zone length and the influence of structural parameters of the device on the vortex suppression were explored.Firstly,empirical formulas for calculating the length of the recirculation zone in the CCS were obtained.In addition,it was proved that placing the annular orifice plate inside the CCS effectively reduced the recirculation zone and improved the ventilation efficiency.Compared to the system without the annular orifice plate,the dimensionless length of the recirculation zone was decreased by 76.3%,and the time to completely discharge the pollutants from the CCS was decreased by 16.7%.Finally,parameters of the annular orifice plate that form the best vortex suppression effect were proposed:the porosity range was 40%–50%,uniform in shape with equal ring spacing,and placed more than one inlet diameter away from the inlet.The results help guide the ventilation design of CCS.展开更多
The yolk–shell structure has a unique advantage in lithium-ion batteries applications due to its ability to effectively buffer the volume expansion of the lithiation/delithiation process.However,its development is li...The yolk–shell structure has a unique advantage in lithium-ion batteries applications due to its ability to effectively buffer the volume expansion of the lithiation/delithiation process.However,its development is limited by the low contact point between the core and shell.Herein,we propose a general strategy of simultaneous construction of sufficient reserved space and multicontinuous active channels by pyrolysis of two carbon substrates.A double-shell structure consisting of Co_(3)O_(4) anchored to hollow carbon sphere and external self-supporting zeolitic imidazolate framework(ZIF)layer was constructed by spray pyrolysis and additional carbon coating in-situ growth.In the process of high-temperature calcination,the carbon and nitrogen layers between the shells separate,creating additional space,while the Co_(3)O_(4) particles between the shells remain are still in close contact to form continuous and fast electron conduction channels,which can realize better charge transfer.Due to the synergy of these design principles,the material has ultra-high initial discharge capacities of 2,183.1 mAh·g^(−1) at 0.2 A·g^(−1) with capacity of 1,121.36 mAh·g^(−1) after 250 cycles,the long-term capacities retention rate is about 92.4%after 700 cycles at 1 A·g^(−1).This unique channel-type double-shell structure fights a way out to prepare novel electrode materials with high performance.展开更多
Hydrogen safety is one of the most important safety indicators in fuel cell vehicles(FCVs)(unlike in other types of alternative energy vehicles).This indicator in FCVs is directly related to the user’s personal safet...Hydrogen safety is one of the most important safety indicators in fuel cell vehicles(FCVs)(unlike in other types of alternative energy vehicles).This indicator in FCVs is directly related to the user’s personal safety in daily vehicle usage.This paper analyzes the safety standards of FCVs in confined spaces.A sealed test chamber and an appropriate test method are devel-oped to evaluate vehicle safety based on specific test requirements.Two FCVs are subjected to static hydrogen leakage and hydrogen emission testing performed in a confined space.The results reveal that the hydrogen concentration in the vicinity of the vehicles approximates 0.0004%which is much lower than 1%while parked for 8 h during the hydrogen leakage test.In the hydrogen emission test under operating conditions,the concentration of the hydrogen gas emitted from the vehicles exceeds 2300 ppm in the vicinity,which requires careful consideration.Based on experiment and analysis,recommendations for the hydrogen safety standards of FCVs in confined spaces are proposed.展开更多
Regulable loading of Ni(OH)_(2) crystals by using three dimensionally ordered mesoporous carbon(3DOMC)as a support is achieved through a confined growth strategy accompanied by steam-assisted crystallization.Dual form...Regulable loading of Ni(OH)_(2) crystals by using three dimensionally ordered mesoporous carbon(3DOMC)as a support is achieved through a confined growth strategy accompanied by steam-assisted crystallization.Dual forms of high-crystalline nanosheet-like Ni(OH)_(2) severally distribute within mesopores or over the outer surface of 3DOMC particles depending on the loading amount(3%^(−1)5%)of Ni(OH)_(2).Benefitted from the highly hybrid combination and efficient electrolyte diffusion,the obtained Ni(OH)_(2)/carbon nanocomposites exhibit an excellent electrochemical performance,and the optimal sample of 6%_Ni(OH)_(2)/3DOMC with confined extrasmall Ni(OH)_(2) nanosheets as dominant shows the highest specific capacitance of 552.5F.g^(−1) at 1.0A⋅g^(−1),which is 330%higher than the contrast sample by using actived carbon as the support.Furthermore,the assembled hybrid supercapacitor by using 6%_Ni(OH)_(2)/3DOMC and 3DOMC as positive and negative electrodes displays an energy density of 11.7 Wh.kg^(−1) at 288.1 W.kg^(−1) and a superior charge/discharge stability.It is expected that the flexible component,well-defined structure,and superior electrochemical performance could promote a great application potential of Ni(OH)_(2)/3DOMC nanocomposites as supercapacitor electrodes and in other energy storage devices.展开更多
The number of active components and their dispersion degree are two key factors affecting the performance of adsorbents.Here,we report a simple but efficient strategy for dispersing active components by using a confin...The number of active components and their dispersion degree are two key factors affecting the performance of adsorbents.Here,we report a simple but efficient strategy for dispersing active components by using a confined space,which is formed by mesoporous silica walls and templates in the as-prepared SBA-15(AS).Such a confined space does not exist in the conventional support,calcined SBA-15,which does not contain a template.The Cu and Zn precursors were introduced to the confined space in the AS and were converted to CuO and ZnO during calcination,during which the template was also removed.The results show that up to 5 mmol·g^(–1) of CuO and ZnO can be well dispersed;however,severe aggregation of both oxides takes place in the sample derived from the calcined SBA-15 with the same loading.Confined space in the AS and the strong interactions caused by the abundant hydroxyl groups are responsible for the dispersion of CuO and ZnO.The bimetallic materials were employed for the adsorptive separation of propene and propane.The samples prepared from the as-prepared SBA-15 showed superior performance to their counterparts from the calcined SBA-15 in terms of both adsorption capacity of propene and selectivity for propene/propane.展开更多
In living organisms,confined space with specific chemical composition and elaborate spatial distribution regulates the formation of natural structures.Learning from the natural structure-forming process,novel synthesi...In living organisms,confined space with specific chemical composition and elaborate spatial distribution regulates the formation of natural structures.Learning from the natural structure-forming process,novel synthesis approaches in deliberated confined systems have been proposed for obtaining designed structures.Artificial confined systems can effectively regulate the synthesis of materials with defined structures according to the geometry of confinements.Collagen fibrils provide biological confinements for the formation of hierarchical structure with periodic arrangement.Genetically engineered living organisms with designed confinements can direct the synthesis of three-dimensional nanostructures.More novel structures will be rationally fabricated in the future with the aid of deeper understanding of biological processes.展开更多
We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liqu...We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liquid phase transition of the liquid titanium. The typical feature of the liquid–liquid phase transition is layering, which is induced by the slit size,pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid–liquid phase transition of liquid metal in a confined space.展开更多
Micro-sized autonomous underwater vehicles(μAUVs) are well suited to various applications in confined underwater spaces. Acoustic communication is required for many application scenarios of μAUVs to enable data tran...Micro-sized autonomous underwater vehicles(μAUVs) are well suited to various applications in confined underwater spaces. Acoustic communication is required for many application scenarios of μAUVs to enable data transmission without surfacing. This paper presents the integration of a compact acoustic communication device with a μAUV prototype. Packet reception rate(PRR) and bit error rate(BER) of the acoustic communication link are evaluated in a confined pool environment through experiments while the μAUV is either stationary or moving.We pinpoint several major factors that impact the communication performance. Experimental results show that the multi-path effect significantly affects the synchronization signals of the communication device. The relative motion between the vehicle and the base station also degrades the communication performance. These results suggest future methods towards improvements.展开更多
This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically...This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.展开更多
Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shal...Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shale oil are put forward.Through key exploration and research on fluid occurrence,fluid phase change,exploitation mechanism,oil start-up mechanism,flow regime/pattern,exploitation mode and enhanced oil recovery(EOR)of shale reservoirs with different storage spaces,multi-scale occurrence states of shale oil and phase behavior of fluid in nano confined space were provided,the multi-phase,multi-scale flow mode and production mechanism with hydraulic fracture-shale bedding fracture-matrix infiltration as the core was clarified,and a multi-scale flow mathematical model and recoverable reserves evaluation method were preliminarily established.The feasibility of development mode with early energy replenishment and recovery factor of 3o%was discussed.Based on these,the researches of key theories and technologies for effective development of Gulong shale oil are proposed to focus on:(1)in-situ sampling and non-destructive testing of core and fluid;(2)high-temperature,high-pressure,nano-scale laboratory simulation experiment;(3)fusion of multi-scale multi-flow regime numerical simulation technology and large-scale application software;(4)waterless(CO_(2))fracturing technique and the fracturing technique for increasing the vertical fracture height;(5)early energy replenishment to enhance oil recovery;(6)lifecycle technical and economic evaluation.Moreover,a series of exploitation tests should be performed on site as soon as possible to verify the theoretical understanding,optimize the exploitation mode,form supporting technologies,and provide a generalizable development model,thereby supporting and guiding the effective development and production of Gulong shale oil.展开更多
This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the ...This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the CH_(4) and CO emissions are very high in closed buildings or confined spaces during oxi-dation processes.Both methane and carbon monoxide are highly toxic,colorless and odorless gases.Both of the gases have their own toxic levels to be detected.But during their combined presence,the toxicity of the either one goes unidentified may be due to their low levels which may lead to an explosion.By using PCA,the correlation of CO and CH_(4) data is carried out and by identifying the areas of high correlation(along the principal component axis)the explosion suppression action can be triggered earlier thus avoiding adverse effects of massive explosions.Wire-less Sensor Network is deployed and simulations are carried with heterogeneous sensors(Carbon Monoxide and Methane sensors)in NS-2 Mannasim framework.The rise in the value of CO even when CH_(4) is below the toxic level may become hazardous to the people around.Thus our proposed methodology will detect the combined presence of both the gases(CH_(4) and CO)and provide an early warning in order to avoid any human losses or toxic effects.展开更多
The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined env...The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined environmental on human physiology factors, including temperature, humidity, noise, pressure,toxic and harmful gases in terms of environmental characteristics in underground mines and an artificial intelligence system for simulation of the environment in a confined space of deep mines. Our results show that the systolic pressure, diastolic pressure, mean pressure, heart rate, respiratory rate, typing test speed and memory level percentage are negatively correlated with temperature value, and positively correlated with humidity value; the human temperature and weight are positively correlated with temperature value, and negatively correlated with humidity value. This research lays the foundation for the study of interaction between the deep confined space environment and safety behavior.展开更多
Hyperthermal environments can harm workers’health and safety.However,it is difficult to include effective protection into standards because heat-related impacts vary significantly accord-ing to individual workers and...Hyperthermal environments can harm workers’health and safety.However,it is difficult to include effective protection into standards because heat-related impacts vary significantly accord-ing to individual workers and multiple factors.Studies suggested obvious relationship between en-vironment condition and bio-electricity signal,including electroencephalogram(EEG)signal.We used a detector with 64 electrodes to perform dedicated EEG measurements of nine individual sub-jects to analyze human cerebral activity under hyperthermal(35℃,80%RH)and standard condi-tions(25℃,30%RH).Amplitude changes of the frequency wavebands were analyzed using statist-ical analysis.Seven participants showed increasing beta activity due to high temperature and high humidity in the primary somatosensory cortex(electrode C3)and the temporopolar region(elec-trode FT 8).The amplitude value of alpha wave is increased from 0.194 to 0.213 while the amp-litude value of beta wave is increased from 0.144 to 0.160.Value is decreased due to hyperthermal environment for most people.The results of this study could be used to inform the development of wearable equipment to monitor the health of on-site workers,which is fundamental to improve worker safety and wellbeing.展开更多
Two-dimensional(2D) PbI_2 flakes have been attracting intensive attention as one potential candidate for the modern optoelectronics. However, suffered from the instability of kinetics-driven growth, the fabricated 2D ...Two-dimensional(2D) PbI_2 flakes have been attracting intensive attention as one potential candidate for the modern optoelectronics. However, suffered from the instability of kinetics-driven growth, the fabricated 2D PbI_2 flakes have a wide dimensional distribution even under the same conditions. Herein, a novel facile space confined physical vapor deposition(PVD) process is provided to synthesize uniform triangle PbI_2 flakes with high quality. The confined space provides a relatively stable growth environment that renders more control on the growth kinetics, leading to highly uniform triangle PbI_2 flakes with the average size of 5 mm and thickness of 17 nm. Moreover, as-fabricated PbI_2-based photodetectors show promising stable and flexible optoelectronic performances to 470 nm light, including high responsivity(0.72 AW^(-1)), large on/off ratio up to 900, fast photoresponse speed(rise time of 13.5 ms and decay time of 20 ms) and high detectivity(1.04×10^(10) Jones). The well-controllable growth of the uniform triangle PbI_2 flakes and the detailed exploration of their optoelectronic properties are particularly valuable for their further practical applications.展开更多
文摘Nanosized NaY crystals have been prepared from metakaolin and sodium silicate by confined space synthesis with starch additive. It is found that the product has a narrow crystal size distribution (50-100 nm), high Si/Al ratio (Si/Al=4.6-6.1), high surface area (1090 m2/g) and the average diameter of nanosized NaY (75 nm) synthesized is 30 nm, it is smaller than that of without starch additive.
基金the Central University Special Funding for Basic Scientific Research(Grant No.30918012201)the Foundation of JWKJW Field(Grant 2020-JCJQ-JJ-392)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_0315).
文摘In response to the demand for short-range detection of anti-smoke environment interference by laser fuzes,this study proposes a smoke environment simulation of non-uniform continuous point source diffusion and investigates an experimental laboratory smoke environment using an ammonium chloride smoke agent.The particle size distribution,composition,and mass flow distribution of the smoke were studied.Based on a discrete phase model and a kεturbulence model,a numerical simulation was developed to model the smoke generation and diffusion processes of the smoke agent in a confined space.The temporal and spatial distribution characteristics of the smoke mass concentration,velocity,and temperature in the space after smoke generation were analyzed,and the motion law governing the smoke diffusion throughout the entire space was summarized.Combined with the experimental verification of the smoke environment laboratory,the results showed that the smoke plume changed from fan-shaped to umbrella-shaped during smoke generation,and then continued to spread around.Meanwhile,the mass concentration of smoke in the space decreased from the middle outward;the changes in temperature and velocity were small and stable.In the diffusion stage(after 900 s),the mass concentration of smoke above 0.8 m was relatively uniform across an area of smoke that was 12 m thick.The concentration decreased over time,following a consistent decreasing trend,and the attenuation was negligible in a very short time.Therefore,this system was suitable for conducting experimental research on laser fuzes in a smoke environment.Owing to the stability of the equipment and facilities,the setup could reproduce the same experimental smoke environment by artificially controlling the smoke emission of the smoke agent.Overall,this work provides a theoretical reference for subsequent research efforts regarding the construction of uniform smoke environments and evaluating laser transmission characteristics in smoky environments.
基金Supported by the Eleventh Five-Year Plan of national support (2007BAI26B03-04)
文摘A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.
文摘One of the major hazards when working onboard Tankers is working in confined spaces, improving the procedures in working in such spaces is obvious, but developing the equipments used in rescue operation is rare to happen, that's why this paper is focusing on differentiating between the manual & more developed equipments used specially in rescuing the crew in such an adequate time, to save the workers' life. The manual way is called "MUCKY CRANE" which is used for rescue purposes onboard tankers, in any of the confined spaces, should be replaced by excel crane which is air or hydraulic driven machine, to achieve better results. As safety precautions measures taken in such tasks are not enough for the required objective achievement. Such safety procedures have been discussed and critical situations have been pointed out.
基金supported by the National Natural Science Foundation of China(No.22204150)GuangDong Basic and Applied Basic Research Foundation(No.2021A1515110036)+1 种基金the National Key R&D Program of China(Nos.2021YFA1200403 and 2018YFE0206900)the Joint NSFC-ISF Research Grant Program(No.22161142020).
文摘The detection of biomarkers with both high sensitivity and specificity is crucial for the diagnosis and treatment of related diseases.However,many current detections employ ex-situ detection method and non-confined condition,thus have many problems,which may eventually lead to inaccurate detection results.Compared to detection in non-confined space,detection in confined space can better reflect the real in-vivo situation.Therefore,the construction of detection for target molecules in confined space has great significance for both theoretical research and practical application.To realize the detection of target molecules in confined space,the probes should accurately enter the confined space where the target molecules reside and interact with the interface.Thus,how to explore and utilize the properties of the interface(for example,bioinspired superwettability)has always been a hot and difficult topic in this field.Herein,the recent advances and our efforts in recent 10 years on detection of bio-target molecules in confined space with superwettable interface have been introduced from the perspective of the detection methods.The suitable and most widely employed detection methods for target molecules in confined spaces are introduced firstly.Then,recent progresses for related detections based on visual,optical,and electrochemical detection methods are presented successively.Finally,the perspective for detection in confined space is discussed for the future development of biochemical detection.
基金supported by the Space Application System of China Manned Space Program,and the National Key Research and Development Program of China under grant number 2022YFF0504500.
文摘Lateral-confined coaxial jet diffusion flame is common in micro thrusters,and the specific impulse is mainly obtained through thermodynamic calculations with an assumption of fuel combustion with an equivalence ratio,regardless of the stability of the combustion process.However,the flame behavior plays an important impact on the performance of a micro thruster through the varied combustion efficiency.The stability of confined coaxial jet diffusion flames with air coflow was studied by experiments and numerical simulation.Methane,hydrogen,and propane were used as fuels.Flame attachment,liftoff,blowout(extinction limits of lifted flame),and blowoff(extinction limits of attached flame) behaviors with the effect of confinement ratios and fuel properties were focused on.Among the range of the jet flow velocity in this research,the hydrogen flame is always attached to the jet exit,the flame tip goes from closed to open as the jet velocity increases,while the flame transitions from attachment to liftoff in the case of CH_(4) and C_(3)H_(8) .Further,in a narrow confined space,the attached flame for both CH4 and C_(3)H_(8) undergoes liftoff followed by blowout.However,in a space with a high confinement ratio,the CH4 flame transitions directly from attachment to blowoff.The critical modified Craya-Curtet number,which is used to predict the onset of the recirculation,is determined through simulation and experiment,and the number is about 1.77.This work provides valuable data on flame stability inside a confined space and gives insights into the design of a thruster.
基金financially sponsored by the Collaborative Innovation Foundation of the Shaanxi Provincial Department of Education (No.20JY035).
文摘The accumulation of pollutants in the recirculation zone can worsen ventilation.It is critical to reduce recirculation zones to improve the ventilation efficiency of buildings.However,the variation rule of the recirculation zone in a cylindrical confined space(CCS)is unclear,and there are few solutions to suppress or eliminate the recirculation zone at present.In this paper,an annular deflector orifice plate for suppressing the recirculation zone was developed based on the structural characteristics of the CCS.This device is simple in structure and can be used flexibly.Through experiments and numerical simulations,the variation rule of the recirculation zone length and the influence of structural parameters of the device on the vortex suppression were explored.Firstly,empirical formulas for calculating the length of the recirculation zone in the CCS were obtained.In addition,it was proved that placing the annular orifice plate inside the CCS effectively reduced the recirculation zone and improved the ventilation efficiency.Compared to the system without the annular orifice plate,the dimensionless length of the recirculation zone was decreased by 76.3%,and the time to completely discharge the pollutants from the CCS was decreased by 16.7%.Finally,parameters of the annular orifice plate that form the best vortex suppression effect were proposed:the porosity range was 40%–50%,uniform in shape with equal ring spacing,and placed more than one inlet diameter away from the inlet.The results help guide the ventilation design of CCS.
基金supported by the National Natural Science Foundation of China(Nos.21871005 and 22171005)the Program for Innovative Research Team of Anhui Education Committee,the Project for Collaborative Innovation of Anhui Higher Education Institutes(Nos.GXXT-2020-005,GXXT-2021-012,and GXXT-2021-013)+1 种基金the Natural Science Foundation of the Education Department of Anhui Province(No.KJ2020A0075)the Foundation of the Anhui Province Key Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources(No.LCECSC-10).
文摘The yolk–shell structure has a unique advantage in lithium-ion batteries applications due to its ability to effectively buffer the volume expansion of the lithiation/delithiation process.However,its development is limited by the low contact point between the core and shell.Herein,we propose a general strategy of simultaneous construction of sufficient reserved space and multicontinuous active channels by pyrolysis of two carbon substrates.A double-shell structure consisting of Co_(3)O_(4) anchored to hollow carbon sphere and external self-supporting zeolitic imidazolate framework(ZIF)layer was constructed by spray pyrolysis and additional carbon coating in-situ growth.In the process of high-temperature calcination,the carbon and nitrogen layers between the shells separate,creating additional space,while the Co_(3)O_(4) particles between the shells remain are still in close contact to form continuous and fast electron conduction channels,which can realize better charge transfer.Due to the synergy of these design principles,the material has ultra-high initial discharge capacities of 2,183.1 mAh·g^(−1) at 0.2 A·g^(−1) with capacity of 1,121.36 mAh·g^(−1) after 250 cycles,the long-term capacities retention rate is about 92.4%after 700 cycles at 1 A·g^(−1).This unique channel-type double-shell structure fights a way out to prepare novel electrode materials with high performance.
基金supported by the Young Elite Scientists Sponsorship Program by CAST and China SAE,the National Key Research and Development Program of China(Grant No.2017YFB0103100)Tianjin Municipal Science and Technology Commission Program(Grant No.17ZXFWGX00040).
文摘Hydrogen safety is one of the most important safety indicators in fuel cell vehicles(FCVs)(unlike in other types of alternative energy vehicles).This indicator in FCVs is directly related to the user’s personal safety in daily vehicle usage.This paper analyzes the safety standards of FCVs in confined spaces.A sealed test chamber and an appropriate test method are devel-oped to evaluate vehicle safety based on specific test requirements.Two FCVs are subjected to static hydrogen leakage and hydrogen emission testing performed in a confined space.The results reveal that the hydrogen concentration in the vicinity of the vehicles approximates 0.0004%which is much lower than 1%while parked for 8 h during the hydrogen leakage test.In the hydrogen emission test under operating conditions,the concentration of the hydrogen gas emitted from the vehicles exceeds 2300 ppm in the vicinity,which requires careful consideration.Based on experiment and analysis,recommendations for the hydrogen safety standards of FCVs in confined spaces are proposed.
基金the National Natural Science Foundation of China(Nos.21978238,21878248,and 21978055)Natural Science Foundation of Shaanxi Provincial Department of Education(No.21JY041).
文摘Regulable loading of Ni(OH)_(2) crystals by using three dimensionally ordered mesoporous carbon(3DOMC)as a support is achieved through a confined growth strategy accompanied by steam-assisted crystallization.Dual forms of high-crystalline nanosheet-like Ni(OH)_(2) severally distribute within mesopores or over the outer surface of 3DOMC particles depending on the loading amount(3%^(−1)5%)of Ni(OH)_(2).Benefitted from the highly hybrid combination and efficient electrolyte diffusion,the obtained Ni(OH)_(2)/carbon nanocomposites exhibit an excellent electrochemical performance,and the optimal sample of 6%_Ni(OH)_(2)/3DOMC with confined extrasmall Ni(OH)_(2) nanosheets as dominant shows the highest specific capacitance of 552.5F.g^(−1) at 1.0A⋅g^(−1),which is 330%higher than the contrast sample by using actived carbon as the support.Furthermore,the assembled hybrid supercapacitor by using 6%_Ni(OH)_(2)/3DOMC and 3DOMC as positive and negative electrodes displays an energy density of 11.7 Wh.kg^(−1) at 288.1 W.kg^(−1) and a superior charge/discharge stability.It is expected that the flexible component,well-defined structure,and superior electrochemical performance could promote a great application potential of Ni(OH)_(2)/3DOMC nanocomposites as supercapacitor electrodes and in other energy storage devices.
基金We acknowledge the financial support of this work by the National Natural Science Foundation of China(Grant Nos.22125804,22078155,and21878149).
文摘The number of active components and their dispersion degree are two key factors affecting the performance of adsorbents.Here,we report a simple but efficient strategy for dispersing active components by using a confined space,which is formed by mesoporous silica walls and templates in the as-prepared SBA-15(AS).Such a confined space does not exist in the conventional support,calcined SBA-15,which does not contain a template.The Cu and Zn precursors were introduced to the confined space in the AS and were converted to CuO and ZnO during calcination,during which the template was also removed.The results show that up to 5 mmol·g^(–1) of CuO and ZnO can be well dispersed;however,severe aggregation of both oxides takes place in the sample derived from the calcined SBA-15 with the same loading.Confined space in the AS and the strong interactions caused by the abundant hydroxyl groups are responsible for the dispersion of CuO and ZnO.The bimetallic materials were employed for the adsorptive separation of propene and propane.The samples prepared from the as-prepared SBA-15 showed superior performance to their counterparts from the calcined SBA-15 in terms of both adsorption capacity of propene and selectivity for propene/propane.
基金This work was financially supported by the National Natural Science Foundation of China(51521001)the Ministry of Science and Technology of China(2015DFR50650)the Fundamental Research Funds for the Central University(WUT 2016IB006).
文摘In living organisms,confined space with specific chemical composition and elaborate spatial distribution regulates the formation of natural structures.Learning from the natural structure-forming process,novel synthesis approaches in deliberated confined systems have been proposed for obtaining designed structures.Artificial confined systems can effectively regulate the synthesis of materials with defined structures according to the geometry of confinements.Collagen fibrils provide biological confinements for the formation of hierarchical structure with periodic arrangement.Genetically engineered living organisms with designed confinements can direct the synthesis of three-dimensional nanostructures.More novel structures will be rationally fabricated in the future with the aid of deeper understanding of biological processes.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1806219 and 52171038)the Special Funding in the Project of the Taishan Scholar Construction Engineering and the Program of Jinan Science and Technology Bureau (Grant No. 2020GXRC019)Key R&D Projects in Shandong Province, China (Grant No. 2021SFGC1001)。
文摘We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liquid phase transition of the liquid titanium. The typical feature of the liquid–liquid phase transition is layering, which is induced by the slit size,pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid–liquid phase transition of liquid metal in a confined space.
基金Project supported by the Office of Naval Research(No.N00014-16-1-2667)the National Natural Science Foundation of China(Nos.61673370 and 11574258)
文摘Micro-sized autonomous underwater vehicles(μAUVs) are well suited to various applications in confined underwater spaces. Acoustic communication is required for many application scenarios of μAUVs to enable data transmission without surfacing. This paper presents the integration of a compact acoustic communication device with a μAUV prototype. Packet reception rate(PRR) and bit error rate(BER) of the acoustic communication link are evaluated in a confined pool environment through experiments while the μAUV is either stationary or moving.We pinpoint several major factors that impact the communication performance. Experimental results show that the multi-path effect significantly affects the synchronization signals of the communication device. The relative motion between the vehicle and the base station also degrades the communication performance. These results suggest future methods towards improvements.
基金Project supported by the Natural Science Foundation of Shandong Province of China for the Youth (Grant No. ZR2023QA102)。
文摘This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.
基金Supported by the National Natural Science Foundation of China(U22B2075).
文摘Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shale oil are put forward.Through key exploration and research on fluid occurrence,fluid phase change,exploitation mechanism,oil start-up mechanism,flow regime/pattern,exploitation mode and enhanced oil recovery(EOR)of shale reservoirs with different storage spaces,multi-scale occurrence states of shale oil and phase behavior of fluid in nano confined space were provided,the multi-phase,multi-scale flow mode and production mechanism with hydraulic fracture-shale bedding fracture-matrix infiltration as the core was clarified,and a multi-scale flow mathematical model and recoverable reserves evaluation method were preliminarily established.The feasibility of development mode with early energy replenishment and recovery factor of 3o%was discussed.Based on these,the researches of key theories and technologies for effective development of Gulong shale oil are proposed to focus on:(1)in-situ sampling and non-destructive testing of core and fluid;(2)high-temperature,high-pressure,nano-scale laboratory simulation experiment;(3)fusion of multi-scale multi-flow regime numerical simulation technology and large-scale application software;(4)waterless(CO_(2))fracturing technique and the fracturing technique for increasing the vertical fracture height;(5)early energy replenishment to enhance oil recovery;(6)lifecycle technical and economic evaluation.Moreover,a series of exploitation tests should be performed on site as soon as possible to verify the theoretical understanding,optimize the exploitation mode,form supporting technologies,and provide a generalizable development model,thereby supporting and guiding the effective development and production of Gulong shale oil.
文摘This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the CH_(4) and CO emissions are very high in closed buildings or confined spaces during oxi-dation processes.Both methane and carbon monoxide are highly toxic,colorless and odorless gases.Both of the gases have their own toxic levels to be detected.But during their combined presence,the toxicity of the either one goes unidentified may be due to their low levels which may lead to an explosion.By using PCA,the correlation of CO and CH_(4) data is carried out and by identifying the areas of high correlation(along the principal component axis)the explosion suppression action can be triggered earlier thus avoiding adverse effects of massive explosions.Wire-less Sensor Network is deployed and simulations are carried with heterogeneous sensors(Carbon Monoxide and Methane sensors)in NS-2 Mannasim framework.The rise in the value of CO even when CH_(4) is below the toxic level may become hazardous to the people around.Thus our proposed methodology will detect the combined presence of both the gases(CH_(4) and CO)and provide an early warning in order to avoid any human losses or toxic effects.
基金funded by ‘‘a group of four’’ Safety Science and Technology Project of State Production Safety Supervision Administration of China (No. 20130801)
文摘The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined environmental on human physiology factors, including temperature, humidity, noise, pressure,toxic and harmful gases in terms of environmental characteristics in underground mines and an artificial intelligence system for simulation of the environment in a confined space of deep mines. Our results show that the systolic pressure, diastolic pressure, mean pressure, heart rate, respiratory rate, typing test speed and memory level percentage are negatively correlated with temperature value, and positively correlated with humidity value; the human temperature and weight are positively correlated with temperature value, and negatively correlated with humidity value. This research lays the foundation for the study of interaction between the deep confined space environment and safety behavior.
基金the Fundamental Research Funds for the Central Universities(Nos.FRF-IDRY-19-009,FRF-TP-19-038A1).
文摘Hyperthermal environments can harm workers’health and safety.However,it is difficult to include effective protection into standards because heat-related impacts vary significantly accord-ing to individual workers and multiple factors.Studies suggested obvious relationship between en-vironment condition and bio-electricity signal,including electroencephalogram(EEG)signal.We used a detector with 64 electrodes to perform dedicated EEG measurements of nine individual sub-jects to analyze human cerebral activity under hyperthermal(35℃,80%RH)and standard condi-tions(25℃,30%RH).Amplitude changes of the frequency wavebands were analyzed using statist-ical analysis.Seven participants showed increasing beta activity due to high temperature and high humidity in the primary somatosensory cortex(electrode C3)and the temporopolar region(elec-trode FT 8).The amplitude value of alpha wave is increased from 0.194 to 0.213 while the amp-litude value of beta wave is increased from 0.144 to 0.160.Value is decreased due to hyperthermal environment for most people.The results of this study could be used to inform the development of wearable equipment to monitor the health of on-site workers,which is fundamental to improve worker safety and wellbeing.
基金supported by the National Natural Science Foundation of China (51472097, 91622117, 21501060, and 51727809)the National Key Research and Development Program (2016YFB0401100)+1 种基金the National Basic Research Program of China (2015CB932600)the Fundamental Research Funds for the Central University (2017KFKJXX007, 2015ZDTD038)
文摘Two-dimensional(2D) PbI_2 flakes have been attracting intensive attention as one potential candidate for the modern optoelectronics. However, suffered from the instability of kinetics-driven growth, the fabricated 2D PbI_2 flakes have a wide dimensional distribution even under the same conditions. Herein, a novel facile space confined physical vapor deposition(PVD) process is provided to synthesize uniform triangle PbI_2 flakes with high quality. The confined space provides a relatively stable growth environment that renders more control on the growth kinetics, leading to highly uniform triangle PbI_2 flakes with the average size of 5 mm and thickness of 17 nm. Moreover, as-fabricated PbI_2-based photodetectors show promising stable and flexible optoelectronic performances to 470 nm light, including high responsivity(0.72 AW^(-1)), large on/off ratio up to 900, fast photoresponse speed(rise time of 13.5 ms and decay time of 20 ms) and high detectivity(1.04×10^(10) Jones). The well-controllable growth of the uniform triangle PbI_2 flakes and the detailed exploration of their optoelectronic properties are particularly valuable for their further practical applications.