The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this probl...The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs.展开更多
Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a rev...Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a review of selected water contaminants and their impacts on human health.The World Health Organization(WHO)guidelines and regional standards for key contaminants were used to characterise water quality in the European Union and UK.The concept of safe drinking water was explained based on the non-observed adverse effect level,threshold concentrations for toxic chemicals,and their total daily intake.Various techniques for monitoring water contaminants and the drinking water standards from five different countries,including the UK,USA,Canada,Pakistan and India,were compared to WHO recommended guidelines.The literature on actual water quality in these regions and its potential health impacts was also discussed.Finally,the role of public water suppliers in identifying and monitoring drinking water contaminants in selected developed countries was presented as a potential guideline for developing countries.This review emphasised the need for a comprehensive understanding of water quality and its impacts on human health to ensure access to clean drinking water worldwide.展开更多
This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the...This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds.展开更多
The US Commonwealth of Puerto Rico is comprised of 143 islands, atolls, cays, and islets. Of the 143 localities, only 3 islands are inhabited: The mainland (often referenced as Puerto Rico), Culebra, and Vieques. To p...The US Commonwealth of Puerto Rico is comprised of 143 islands, atolls, cays, and islets. Of the 143 localities, only 3 islands are inhabited: The mainland (often referenced as Puerto Rico), Culebra, and Vieques. To properly analyze the water supply quality, the mainland will be the focal point for examining environmental and social injustices. Puerto Rico is a racially diverse but ethnically homogenous territory, with most of the commonwealth living below the poverty level. Access to clean water sources is always tenuous in Puerto Rico. Over 70 percent of the island is served by water, violating US health standards. However, the recent hurricanes made the situation even more detrimental. According to data reported between January 2015 and March 2018 by the Consumer Confidence Report (CCR), 97 percent of the population of Puerto Rico utilizes a common drinking water system with one or more recent violations of the Safe Drinking Water Act for its testing requirements for lead and copper levels. The amounts found were far higher than any US state, meaning that virtually everyone on the island gets water from systems that violated testing or reporting requirements. In this study, we have collected and analyzed the levels of trihalomethanes (THMs), haloacetic acids (HAAs), copper, lead, and total organic compounds (TOCs) in drinking water providing systems in Puerto Rico and compared them with the recommended levels of contaminants provided by the US Environmental Protection Agency (EPA) guidelines. Many of these reported contaminants can have serious and detrimental health effects after prolonged exposure to higher concentrations of the contaminants found in the drinking water sources of Puerto Rico.展开更多
Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracyclin...Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.展开更多
The investigation of the environmental properties of minerals, i.e., environmental mineralogy, is a branch of science dealing with interactions between natural minerals and spheres of the Earth surface as well as a re...The investigation of the environmental properties of minerals, i.e., environmental mineralogy, is a branch of science dealing with interactions between natural minerals and spheres of the Earth surface as well as a reflection of global change, prevention of ecological destruction, participation in biomineralogy, and remediation of environmental pollution. Pollutant treatment by natural minerals is based on the natural law and reflects natural self-purification functions in the inorganic world, similar to that of the organic world - a biological treatment. A series of case studies related to natural self-purification, which were mostly completed by our group, are discussed in this paper. In natural cryptomelane there is a larger pseudotetragonal tunnel than that formed by [MnO6] octahedral double chains, with an aperture of 0.462-0.466 nm2, filled with K cations. Cryptomelane might be a real naturally-occurring mineral of the active octahedral molecular sieve (OMS-2). CrⅥ-bearing wastewater can be treated by natural pyrrhotite, which is used as a reductant to reduce CrⅥ and as a precipitant to precipitate CrⅢ simultaneously. Batch experiments were conducted using the CTMAB-Montmorillonite as an adsorbent for aromatic contaminants (phenol, aniline, benzene, toluene and xylenes), which are detected frequently in the leaching water from municipal waste deposits around China. The CTMAB modification has proved very effective to enhance the adsorption capacity of the sorbent. Expansion of vermiculite develops loose interior structures, such as pores or cracks, inside briquettes, and thus brings enough oxygen for combustion and the sulfation reaction. Effective combustion of the original carbon reduces the amount of dust in the fly ash.展开更多
Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied dur...Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied during the oxidation,decomposition, and removal of organic contaminations on a silicon wafer surface, and it was used as the first step in the diamond electrochemical cleaning technique (DECT). The cleaning effects of DECT were compared with the RCA cleaning technique, including the silicon surface chemical composition that was observed with X-ray photoelectron spectroscopy and the morphology observed with atomic force microscopy. The measurement results show that the silicon surface cleaned by DECT has slightly less organic residue and lower micro-roughness,so the new technique is more effective than the RCA cleaning technique.展开更多
A novel method for sampling and enriching organic volatile contaminants in the vacuum environment combined with qualitative analysis based on the vacuum simulation test is proposed. A nanofiber is used as absorbent to...A novel method for sampling and enriching organic volatile contaminants in the vacuum environment combined with qualitative analysis based on the vacuum simulation test is proposed. A nanofiber is used as absorbent to collect the organic volatile contaminants in the vacuum environment and then eluted by methanol. The eluent is analyzed by gas chromatography ( GC ) and gas chromatography-mass spectrometry (GC/MS) to identify the composition of the organic contaminants. The nanofiber is composed of polystyrene and it is prepared by electrospinning. Before being used, the nanofiber is processed by ultrasound in ethanol for 15 min to remove some impurities and dried in an oven at 60 ℃, and then 10 mg of the nanofiber is wrapped in a thermoplastic polyester fabric pocket. The vacuum pump oil and di-iso-decyl phthalate (DIDP) are chosen as absorbates to test the absorbent performance of the nanofiber in the vacuum environment. Experiments are performed under the pressure of 10-4 and 103 Pa, respectively. It is shown that the nanofiber-based enrichment device can be used to adsorb the organic contaminants in the vacuum simulation environment.展开更多
Male reproductive health has deteriorated considerably in the last few decades. Nutritional, socioeconomic, lifestyle and environmental factors (among others) have been attributed to compromising male reproductive h...Male reproductive health has deteriorated considerably in the last few decades. Nutritional, socioeconomic, lifestyle and environmental factors (among others) have been attributed to compromising male reproductive health. In recent years, a large volume of evidence has accumulated that suggests that the trend of decreasing male fertility (in terms of sperm count, quality and other changes in male reproductive health) might be due to exposure to environmental toxicants. These environmental contaminants can mimic natural oestrogens and target testicular spermatogenesis, steroidogenesis, and the function of both Sertoli and Leydig cells. Most environmental toxicants have been shown to induce reactive oxygen species, thereby causing a state of oxidative stress in various compartments of the testes. However, the molecular mechanism(s) of action of the environmental toxicants on the testis have yet to be elucidated. This review discusses the effects of some of the more commonly used environmental contaminants on testicular function through the induction of oxidative stress and apoptosis.展开更多
The occurrence and impacts of emerging organic contaminants(EOCs)in the aquatic environment have gained widespread attention over the past two decades.Due to large number of potential contaminants,monitoring campaigns...The occurrence and impacts of emerging organic contaminants(EOCs)in the aquatic environment have gained widespread attention over the past two decades.Due to large number of potential contaminants,monitoring campaigns,treatment plants,and proposed regulations should preferentially focus on specific pollutants with the highest potential for ecological and human health effects.In the present study,a multi-criteria screening approach based on hazard and exposure potentials was developed for prioritization of 405 unregulated EOCs already present in Chinese surface water.Hazard potential,exposure potential,and risk quotients for ecological and human health effects were quantitatively analyzed and used to screen contaminants.The hazard potential was defined by contaminant persistence,bioaccumulation,ecotoxicity,and human health effects;similarly,the exposure potential was a function of contaminant concentration and detection frequency.In total,123 compounds passed the preselection process,which involved a priority index equal to the normalized hazard potential multiplied by the normalized exposure potential.Based on the prioritization scheme,11 compounds were identified as top-priority,and 37 chemicals were defined as high-priority.The results obtained by the priority index were compared with four other prioritization schemes based on exposure potential,hazard potential,or risk quotients for ecological effects or human health.The priority index effectively captured and integrated the results from the more simplistic prioritization schemes.Based on identified data gaps,four uncertainty categories were classified to recommend:①regular monitoring,derivation of environmental quality standards,and development of control strategies;②increased monitoring;③fortified hazard assessment;and④increased efforts to collect occurrence and toxicity data.Overall,20 pollutants were recommended as priority EOCs.The prioritized list of contaminants provides the necessary information for authoritative regulations to monitor,control,evaluate,and manage the risks of environmentally-relevant EOCs in Chinese surface water.展开更多
Food safety is one of the major concerns in every country regardless of the economic and social development. The frequent occurrence of food scandals in the world has led the Chinese government to implement several st...Food safety is one of the major concerns in every country regardless of the economic and social development. The frequent occurrence of food scandals in the world has led the Chinese government to implement several strategies to fortify the food supply system to a high food safety standard. This relies heavily on laboratory testing services but conventional methods for detection of food contaminants and toxicants are limited by sophisticated sample preparation procedures, long analysis time, large instruments and professional personnel to meet the increasing demands. In this review, we have incorporated most of the current and potential rapid detection methods for many notorious food contaminants and toxicants including microbial agents, toxic ions, pesticides, veterinary drugs and preservatives, as well as detection of genetically modified food genes and adulterated edible oil. Development of rapid, accurate, easy-to-use and affordable testing methods could urge food handlers and the public to actively screen for food contaminants and toxicants instead of passively relying on monitoring by the government examination facility. This review also provides several recommendations including how to encourage the public to engage in the food safety management system and provide optimal education and financial assistance that may improve the current Chinese food safety control system.展开更多
Fluidized pellet bed (FPB) has been successfully applied in water and wastewater treatment. However, the removal mechanism of contaminants especially the soluble ones, is still unclear. This study aimed to evaluate ...Fluidized pellet bed (FPB) has been successfully applied in water and wastewater treatment. However, the removal mechanism of contaminants especially the soluble ones, is still unclear. This study aimed to evaluate the effectiveness of FPB reactor for removing soluble contaminants from synthetic wastewater. By only coagulation through jar test operation with addition of polyaluminium chloride (PAC1) as primary coagulant and polyacryamide (PAM) as coagulant-aid, the removals of soluble chemical oxygen demand (COD), total phosphorus (TP), and NH4^+-N were found to be only 2.2%-7.5%, 5.7%-25.5%, and 9.9%-18.5%, respectively. However, by FPB operation under the same dosage of coagulants, these values increased to 82.7%, 37.2%, and 50%, indicating that the formation of pellets in the FPB effectively enhanced the removal of soluble contaminants. By careful comparison of the settleablility and filterability of the pollutants after coagulation, the originally soluble contaminants could be divided into three groups, namely: (1) coagulated-and- settleable, (2) coagulated-but-nonsettleable, and (3) uncoagulable. It was found that not only the first two groups but also a large part of the third group could be effectively removed by FPB operation. However, the mechanism for the removal of the uncoagulable pollutants by FPB operation still needs further investigation.展开更多
The detection of chemical contaminants is critical to ensure dairy safety. These contaminants include veterinary medicines, antibiotics, pesticides, heavy metals, mycotoxins, and persistent organic pollutants (POPs)...The detection of chemical contaminants is critical to ensure dairy safety. These contaminants include veterinary medicines, antibiotics, pesticides, heavy metals, mycotoxins, and persistent organic pollutants (POPs). Immunoassays have recently been used to detect contaminants in milk because of their simple operation, high speed, and low cost. This article describes the latest developments in the most important component of immunoassays--antibodies, and then reviews the four major substrates used for immunoassays (i.e., microplates, membranes, gels, and chips) as well as their use in the detection of milk contaminants. The paper concludes with prospects for further aDDlications of these immunoassavs.展开更多
Production and storage-transportation of crude oil can not only give rise to soil pollution but also destroy ecological environment. Degradation of microbes for oily soil was studied with the instnunent, Geofina Hydro...Production and storage-transportation of crude oil can not only give rise to soil pollution but also destroy ecological environment. Degradation of microbes for oily soil was studied with the instnunent, Geofina Hydrocarbon Meter (GHM), by experimental analysis qualitatively and quantitatively in the paper. Analytical result showed that the crude oil could be considerably degraded by eating-oil microbes in oily soil and the number of eating-oil microbes increased while the working hours of oil-well risi...展开更多
Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under diff...Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage.展开更多
From the view of both objective and subjective factors,the indoor air quality(IAQ)evaluation was considered.Carbon dioxide(CO2)and formaldehyde(HCHO)were selected as the typical contaminants of indoor air,and the eval...From the view of both objective and subjective factors,the indoor air quality(IAQ)evaluation was considered.Carbon dioxide(CO2)and formaldehyde(HCHO)were selected as the typical contaminants of indoor air,and the evaluation method of logarithmic index was adopted as the evaluation means of IAQ.Then the recommended limits(RL)of typical contaminants CO2 and HCHO were given through analysis and calculation.The limits of CO2 and HCHO in Indoor Air Quality Standard of China or other existing standards probably correspond to the level of PD=25(%).The result shows that the existing standards fail to meet the requirement of the definition of "acceptable indoor air quality",that is to say,less than 20% of the people express dissatisfaction.When PD=20%,RL of CO2 and HCHO are 728×10-6 and 0.068×10-6 respectively,which are stricter than the limits in the existing standards.The method proposed in this paper is applicable to 13.1%≤PD≤86.7%.展开更多
Twenty-nine samples of surface sediments from tidal flats in the Northern Shandong Province were collected for grain size, heavy metal(Hg, Cu, Pb, Zn, Cd, and Cr), and oil pollution analyses. The geoaccumulation index...Twenty-nine samples of surface sediments from tidal flats in the Northern Shandong Province were collected for grain size, heavy metal(Hg, Cu, Pb, Zn, Cd, and Cr), and oil pollution analyses. The geoaccumulation index(Igeo) and factor analysis were introduced to evaluate sediment quality and source of contaminants. The mean concentrations of Hg, Cu, Pb, Zn, Cd, Cr, and oil in the surface sediments in the study area are 0.033, 17.756, 19.121, 55.700, 0.291, 59.563, and 14.213 μg g-1, respectively. The heavy metal contamination in the old delta lobe is slightly higher than that in the abandoned delta lobe; however, the opposite was observed for oil pollution. The Igeo results revealed that the overall quality of the surface sediments in the study area is in good condition. The heavy metal pollution levels show a descending order: Cd> Hg> Cr> Cu> Zn> Pb, Cd being the main pollutant. The contamination level for in the study area is relatively lower than those for China's other tidal flats. Heavy metals are mainly derived from natural sources of rock weathering and erosion, partly influenced by industrial and agricultural discharge. However, oil pollution is mainly from runoff input, motorized fishing boat sewage, and oil exploitation.展开更多
Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is empl...Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field mod- ulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (er), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically.展开更多
Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechan...Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechanism through the induced Stokes drift,and that this dispersion mechanism may have the same order of significance comparable with the others means due to tidal currents and wind.It is investigated whether or not surface floating substances will disperse in the random wave environment due to the induced Stokes drift.An analytical derivation is first performed to obtain the drift velocity under the random waves.From the analysis,it is shown that the drift velocity is a time-independent value that does not possess any fluctuation given a specific wave energy spectrum.Thus,the random wave drift by itself should not have a dispersive effect on the surface floating substances.Experiments were then conducted with small floating objects subjected to P-M spectral waves in a laboratory wave flume,and the experimental results reinforced the conclusion drawn.展开更多
In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and ope...In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and operated at low temperature using the carbon resource of sodium acetate. Aerobic granules cultivated in AGS-MBR possess smooth surface and compact structure in morphology as well as better settling property and higher biomass after 38 days. The average parameters of aerobic granules are: diameter 3. 1 mm,wet density 1. 041 g/mL,sludge volume index 42. 35 mL/g and settling velocity 20. 6 - 45. 2 cm/min. During the start-up of AGS-MBR,the respectively average contaminants removal efficiencies at low temperature are 91. 9% for chemical oxygen demand (COD) ,89. 2% for NH4 + -N and 86. 3% for PO43- -P,and the overgrowth of filamentous bacteria has been well controlled. In addition,the hollow fiber microfiltration (MF) membrane fouling is light and the regime membrane layer is capable of enhancing membrane filtration as well as the average growth of trans-membrane pressure (TMP) is 1. 07 kPa/d. Compared with the conventional cultivation of aerobic granules,the sludge granulation time significantly decreases from 73 days to 38 days by the application of microfiltration membrane at low temperature.展开更多
基金supported by the National Natural Science Foundation of China(No.21906056No.22176060)+2 种基金the Undergraduate Training Program on Innovation and Entrepreneurship(S202110251087)the Science and Technology Commission of Shanghai Municipality(22ZR1418600)Shanghai Municipal Science and Technology(No.20DZ2250400).
文摘The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs.
文摘Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a review of selected water contaminants and their impacts on human health.The World Health Organization(WHO)guidelines and regional standards for key contaminants were used to characterise water quality in the European Union and UK.The concept of safe drinking water was explained based on the non-observed adverse effect level,threshold concentrations for toxic chemicals,and their total daily intake.Various techniques for monitoring water contaminants and the drinking water standards from five different countries,including the UK,USA,Canada,Pakistan and India,were compared to WHO recommended guidelines.The literature on actual water quality in these regions and its potential health impacts was also discussed.Finally,the role of public water suppliers in identifying and monitoring drinking water contaminants in selected developed countries was presented as a potential guideline for developing countries.This review emphasised the need for a comprehensive understanding of water quality and its impacts on human health to ensure access to clean drinking water worldwide.
文摘This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds.
文摘The US Commonwealth of Puerto Rico is comprised of 143 islands, atolls, cays, and islets. Of the 143 localities, only 3 islands are inhabited: The mainland (often referenced as Puerto Rico), Culebra, and Vieques. To properly analyze the water supply quality, the mainland will be the focal point for examining environmental and social injustices. Puerto Rico is a racially diverse but ethnically homogenous territory, with most of the commonwealth living below the poverty level. Access to clean water sources is always tenuous in Puerto Rico. Over 70 percent of the island is served by water, violating US health standards. However, the recent hurricanes made the situation even more detrimental. According to data reported between January 2015 and March 2018 by the Consumer Confidence Report (CCR), 97 percent of the population of Puerto Rico utilizes a common drinking water system with one or more recent violations of the Safe Drinking Water Act for its testing requirements for lead and copper levels. The amounts found were far higher than any US state, meaning that virtually everyone on the island gets water from systems that violated testing or reporting requirements. In this study, we have collected and analyzed the levels of trihalomethanes (THMs), haloacetic acids (HAAs), copper, lead, and total organic compounds (TOCs) in drinking water providing systems in Puerto Rico and compared them with the recommended levels of contaminants provided by the US Environmental Protection Agency (EPA) guidelines. Many of these reported contaminants can have serious and detrimental health effects after prolonged exposure to higher concentrations of the contaminants found in the drinking water sources of Puerto Rico.
基金supported by the Key R&D Plan of Anhui Province(No.201904a07020013)Collaborative Innovation Program of Hefei Science Center,CAS(No.CX2140000018)the Funding for Joint Lab of Applied Plasma Technology(No.JL06120001H)。
文摘Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.
基金supported by the National Key Program for Basic Research of China(No.2001CCA02400)the National Natural Science Foundation of China(Grant No.49672097,49972017 and 40172022).
文摘The investigation of the environmental properties of minerals, i.e., environmental mineralogy, is a branch of science dealing with interactions between natural minerals and spheres of the Earth surface as well as a reflection of global change, prevention of ecological destruction, participation in biomineralogy, and remediation of environmental pollution. Pollutant treatment by natural minerals is based on the natural law and reflects natural self-purification functions in the inorganic world, similar to that of the organic world - a biological treatment. A series of case studies related to natural self-purification, which were mostly completed by our group, are discussed in this paper. In natural cryptomelane there is a larger pseudotetragonal tunnel than that formed by [MnO6] octahedral double chains, with an aperture of 0.462-0.466 nm2, filled with K cations. Cryptomelane might be a real naturally-occurring mineral of the active octahedral molecular sieve (OMS-2). CrⅥ-bearing wastewater can be treated by natural pyrrhotite, which is used as a reductant to reduce CrⅥ and as a precipitant to precipitate CrⅢ simultaneously. Batch experiments were conducted using the CTMAB-Montmorillonite as an adsorbent for aromatic contaminants (phenol, aniline, benzene, toluene and xylenes), which are detected frequently in the leaching water from municipal waste deposits around China. The CTMAB modification has proved very effective to enhance the adsorption capacity of the sorbent. Expansion of vermiculite develops loose interior structures, such as pores or cracks, inside briquettes, and thus brings enough oxygen for combustion and the sulfation reaction. Effective combustion of the original carbon reduces the amount of dust in the fly ash.
文摘Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied during the oxidation,decomposition, and removal of organic contaminations on a silicon wafer surface, and it was used as the first step in the diamond electrochemical cleaning technique (DECT). The cleaning effects of DECT were compared with the RCA cleaning technique, including the silicon surface chemical composition that was observed with X-ray photoelectron spectroscopy and the morphology observed with atomic force microscopy. The measurement results show that the silicon surface cleaned by DECT has slightly less organic residue and lower micro-roughness,so the new technique is more effective than the RCA cleaning technique.
基金The National Basic Research Program of China(973 Program)(No.2012CB933302)the National Natural Science Foundation of China(No.81172720)+2 种基金the Science and Technology Pillar Program of Jiangsu Province(No.BE2010088)the Municipal Science and Technology Project of Suzhou City(No.SYN201006,SG201028)the Undergraduate Student Scientific Training Program of Southeast University(No.T12261005)
文摘A novel method for sampling and enriching organic volatile contaminants in the vacuum environment combined with qualitative analysis based on the vacuum simulation test is proposed. A nanofiber is used as absorbent to collect the organic volatile contaminants in the vacuum environment and then eluted by methanol. The eluent is analyzed by gas chromatography ( GC ) and gas chromatography-mass spectrometry (GC/MS) to identify the composition of the organic contaminants. The nanofiber is composed of polystyrene and it is prepared by electrospinning. Before being used, the nanofiber is processed by ultrasound in ethanol for 15 min to remove some impurities and dried in an oven at 60 ℃, and then 10 mg of the nanofiber is wrapped in a thermoplastic polyester fabric pocket. The vacuum pump oil and di-iso-decyl phthalate (DIDP) are chosen as absorbates to test the absorbent performance of the nanofiber in the vacuum environment. Experiments are performed under the pressure of 10-4 and 103 Pa, respectively. It is shown that the nanofiber-based enrichment device can be used to adsorb the organic contaminants in the vacuum simulation environment.
文摘Male reproductive health has deteriorated considerably in the last few decades. Nutritional, socioeconomic, lifestyle and environmental factors (among others) have been attributed to compromising male reproductive health. In recent years, a large volume of evidence has accumulated that suggests that the trend of decreasing male fertility (in terms of sperm count, quality and other changes in male reproductive health) might be due to exposure to environmental toxicants. These environmental contaminants can mimic natural oestrogens and target testicular spermatogenesis, steroidogenesis, and the function of both Sertoli and Leydig cells. Most environmental toxicants have been shown to induce reactive oxygen species, thereby causing a state of oxidative stress in various compartments of the testes. However, the molecular mechanism(s) of action of the environmental toxicants on the testis have yet to be elucidated. This review discusses the effects of some of the more commonly used environmental contaminants on testicular function through the induction of oxidative stress and apoptosis.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China (2017ZX07202)Beijing Science and Technology Planning Project (Z191100006919003)
文摘The occurrence and impacts of emerging organic contaminants(EOCs)in the aquatic environment have gained widespread attention over the past two decades.Due to large number of potential contaminants,monitoring campaigns,treatment plants,and proposed regulations should preferentially focus on specific pollutants with the highest potential for ecological and human health effects.In the present study,a multi-criteria screening approach based on hazard and exposure potentials was developed for prioritization of 405 unregulated EOCs already present in Chinese surface water.Hazard potential,exposure potential,and risk quotients for ecological and human health effects were quantitatively analyzed and used to screen contaminants.The hazard potential was defined by contaminant persistence,bioaccumulation,ecotoxicity,and human health effects;similarly,the exposure potential was a function of contaminant concentration and detection frequency.In total,123 compounds passed the preselection process,which involved a priority index equal to the normalized hazard potential multiplied by the normalized exposure potential.Based on the prioritization scheme,11 compounds were identified as top-priority,and 37 chemicals were defined as high-priority.The results obtained by the priority index were compared with four other prioritization schemes based on exposure potential,hazard potential,or risk quotients for ecological effects or human health.The priority index effectively captured and integrated the results from the more simplistic prioritization schemes.Based on identified data gaps,four uncertainty categories were classified to recommend:①regular monitoring,derivation of environmental quality standards,and development of control strategies;②increased monitoring;③fortified hazard assessment;and④increased efforts to collect occurrence and toxicity data.Overall,20 pollutants were recommended as priority EOCs.The prioritized list of contaminants provides the necessary information for authoritative regulations to monitor,control,evaluate,and manage the risks of environmentally-relevant EOCs in Chinese surface water.
文摘Food safety is one of the major concerns in every country regardless of the economic and social development. The frequent occurrence of food scandals in the world has led the Chinese government to implement several strategies to fortify the food supply system to a high food safety standard. This relies heavily on laboratory testing services but conventional methods for detection of food contaminants and toxicants are limited by sophisticated sample preparation procedures, long analysis time, large instruments and professional personnel to meet the increasing demands. In this review, we have incorporated most of the current and potential rapid detection methods for many notorious food contaminants and toxicants including microbial agents, toxic ions, pesticides, veterinary drugs and preservatives, as well as detection of genetically modified food genes and adulterated edible oil. Development of rapid, accurate, easy-to-use and affordable testing methods could urge food handlers and the public to actively screen for food contaminants and toxicants instead of passively relying on monitoring by the government examination facility. This review also provides several recommendations including how to encourage the public to engage in the food safety management system and provide optimal education and financial assistance that may improve the current Chinese food safety control system.
基金supported by the National Natural Science Foundation of China (No. 50621140001, 50708089)the High-Tech Research and Development Program (863) of China (No. 2006AA06Z328).
文摘Fluidized pellet bed (FPB) has been successfully applied in water and wastewater treatment. However, the removal mechanism of contaminants especially the soluble ones, is still unclear. This study aimed to evaluate the effectiveness of FPB reactor for removing soluble contaminants from synthetic wastewater. By only coagulation through jar test operation with addition of polyaluminium chloride (PAC1) as primary coagulant and polyacryamide (PAM) as coagulant-aid, the removals of soluble chemical oxygen demand (COD), total phosphorus (TP), and NH4^+-N were found to be only 2.2%-7.5%, 5.7%-25.5%, and 9.9%-18.5%, respectively. However, by FPB operation under the same dosage of coagulants, these values increased to 82.7%, 37.2%, and 50%, indicating that the formation of pellets in the FPB effectively enhanced the removal of soluble contaminants. By careful comparison of the settleablility and filterability of the pollutants after coagulation, the originally soluble contaminants could be divided into three groups, namely: (1) coagulated-and- settleable, (2) coagulated-but-nonsettleable, and (3) uncoagulable. It was found that not only the first two groups but also a large part of the third group could be effectively removed by FPB operation. However, the mechanism for the removal of the uncoagulable pollutants by FPB operation still needs further investigation.
基金financially supported by the Beijing Dairy Industry Innovation TeamFeed Quality and Safety Control Innovation Team of Chinese Academy of Agricultural Sciences
文摘The detection of chemical contaminants is critical to ensure dairy safety. These contaminants include veterinary medicines, antibiotics, pesticides, heavy metals, mycotoxins, and persistent organic pollutants (POPs). Immunoassays have recently been used to detect contaminants in milk because of their simple operation, high speed, and low cost. This article describes the latest developments in the most important component of immunoassays--antibodies, and then reviews the four major substrates used for immunoassays (i.e., microplates, membranes, gels, and chips) as well as their use in the detection of milk contaminants. The paper concludes with prospects for further aDDlications of these immunoassavs.
基金Supported by the nature scientific fund of Heilongjiang province(No.110210).
文摘Production and storage-transportation of crude oil can not only give rise to soil pollution but also destroy ecological environment. Degradation of microbes for oily soil was studied with the instnunent, Geofina Hydrocarbon Meter (GHM), by experimental analysis qualitatively and quantitatively in the paper. Analytical result showed that the crude oil could be considerably degraded by eating-oil microbes in oily soil and the number of eating-oil microbes increased while the working hours of oil-well risi...
基金supported by the National Natural Science Foundation of China(Grants No.10972134 and 11032007)
文摘Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage.
文摘From the view of both objective and subjective factors,the indoor air quality(IAQ)evaluation was considered.Carbon dioxide(CO2)and formaldehyde(HCHO)were selected as the typical contaminants of indoor air,and the evaluation method of logarithmic index was adopted as the evaluation means of IAQ.Then the recommended limits(RL)of typical contaminants CO2 and HCHO were given through analysis and calculation.The limits of CO2 and HCHO in Indoor Air Quality Standard of China or other existing standards probably correspond to the level of PD=25(%).The result shows that the existing standards fail to meet the requirement of the definition of "acceptable indoor air quality",that is to say,less than 20% of the people express dissatisfaction.When PD=20%,RL of CO2 and HCHO are 728×10-6 and 0.068×10-6 respectively,which are stricter than the limits in the existing standards.The method proposed in this paper is applicable to 13.1%≤PD≤86.7%.
基金supported by the 908 Special Coastal Surveys of Shandong Province Project (No. SD908-01-03)the Ocean Public Welfare Scientific Research Project (No. 201005029)
文摘Twenty-nine samples of surface sediments from tidal flats in the Northern Shandong Province were collected for grain size, heavy metal(Hg, Cu, Pb, Zn, Cd, and Cr), and oil pollution analyses. The geoaccumulation index(Igeo) and factor analysis were introduced to evaluate sediment quality and source of contaminants. The mean concentrations of Hg, Cu, Pb, Zn, Cd, Cr, and oil in the surface sediments in the study area are 0.033, 17.756, 19.121, 55.700, 0.291, 59.563, and 14.213 μg g-1, respectively. The heavy metal contamination in the old delta lobe is slightly higher than that in the abandoned delta lobe; however, the opposite was observed for oil pollution. The Igeo results revealed that the overall quality of the surface sediments in the study area is in good condition. The heavy metal pollution levels show a descending order: Cd> Hg> Cr> Cu> Zn> Pb, Cd being the main pollutant. The contamination level for in the study area is relatively lower than those for China's other tidal flats. Heavy metals are mainly derived from natural sources of rock weathering and erosion, partly influenced by industrial and agricultural discharge. However, oil pollution is mainly from runoff input, motorized fishing boat sewage, and oil exploitation.
基金supported by the National Natural Science Foundation of China(Grant No.61178018)the Ph.D.Funding Support Program of Education Ministry of China(Grant No.20110185110007)
文摘Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field mod- ulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (er), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically.
基金The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Research Foundation of China under contract No.2015491311
文摘Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechanism through the induced Stokes drift,and that this dispersion mechanism may have the same order of significance comparable with the others means due to tidal currents and wind.It is investigated whether or not surface floating substances will disperse in the random wave environment due to the induced Stokes drift.An analytical derivation is first performed to obtain the drift velocity under the random waves.From the analysis,it is shown that the drift velocity is a time-independent value that does not possess any fluctuation given a specific wave energy spectrum.Thus,the random wave drift by itself should not have a dispersive effect on the surface floating substances.Experiments were then conducted with small floating objects subjected to P-M spectral waves in a laboratory wave flume,and the experimental results reinforced the conclusion drawn.
基金Sponsored by the National High Technology Research and Development Program of China (863 Program,Grant No.2008AA06Z304)State Water Pollution Control and Harnessing of the Major Projects (Grant No.2009ZX07424-005)International Cooperation Program (Grant No.2010DFA92460)
文摘In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and operated at low temperature using the carbon resource of sodium acetate. Aerobic granules cultivated in AGS-MBR possess smooth surface and compact structure in morphology as well as better settling property and higher biomass after 38 days. The average parameters of aerobic granules are: diameter 3. 1 mm,wet density 1. 041 g/mL,sludge volume index 42. 35 mL/g and settling velocity 20. 6 - 45. 2 cm/min. During the start-up of AGS-MBR,the respectively average contaminants removal efficiencies at low temperature are 91. 9% for chemical oxygen demand (COD) ,89. 2% for NH4 + -N and 86. 3% for PO43- -P,and the overgrowth of filamentous bacteria has been well controlled. In addition,the hollow fiber microfiltration (MF) membrane fouling is light and the regime membrane layer is capable of enhancing membrane filtration as well as the average growth of trans-membrane pressure (TMP) is 1. 07 kPa/d. Compared with the conventional cultivation of aerobic granules,the sludge granulation time significantly decreases from 73 days to 38 days by the application of microfiltration membrane at low temperature.