Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties...Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.展开更多
The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total ...The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total electron content(TEC),which neural network methods have recently been widely used.However,the results are mainly presented for a limited set of meridians.This paper examines the longitudinal dependence of the TEC forecast accuracy in the equatorial zone.In this case,the methods are used that provided the best accuracy on three meridians:European(30°E),Southeastern(110°E)and American(75°W).Results for the stations considered are analyzed as a function of longitude using the Jet Propulsion Laboratory Global Ionosphere Map(JPL GIM)for 2015.These results are for 2 h ahead and 24 h ahead forecast.It was found that in this case,based on the metric values,three groups of architectures can be distinguished.The first group included long short-term memory(LSTM),gated recurrent unit(GRU),and temporal convolutional networks(TCN)models as a part of unidirectional deep learning models;the second group is based on the recurrent models from the first group,which were supplemented with a bidirectional algorithm,increasing the TEC forecasting accuracy by 2-3 times.The third group,which includes the bidirectional TCN architecture(BiTCN),provided the highest accuracy.For this architecture,according to data obtained for 9 equatorial stations,practical independence of the TEC prediction accuracy from longitude was observed under the following metrics(Mean Absolute Error MAE,Root Mean Square Error RMSE,Mean Absolute Percentage Error MAPE):MAE(2 h)is 0.2 TECU approximately;MAE(24 h)is 0.4 TECU approximately;RMSE(2 h)is less than 0.5 TECU except Niue station(RMSE(2 h)is 1 TECU approximately);RMSE(24 h)is in the range of 1.0-1.7 TECU;MAPE(2 h)<1%except Darwin station,MAPE(24 h)<2%.This result was confirmed by data from additional 5 stations that formed latitudinal chains in the equatorial part of the three meridians.The complete correspondence of the observational and predicted TEC values is illustrated using several stations for disturbed conditions on December 19-22,2015,which included the strongest magnetic storm in the second half of the year(min Dst=-155 nT).展开更多
Understanding the quantitative responses of anisotropic dynamic properties in organic-rich shale with different kerogen content(KC)is of great significance in hydrocarbon exploration and development.Conducting control...Understanding the quantitative responses of anisotropic dynamic properties in organic-rich shale with different kerogen content(KC)is of great significance in hydrocarbon exploration and development.Conducting controlled experiments with a single variable is challenging for natural shales due to their high variations in components,diagenesis conditions,or pore fluid.We employed the hot-pressing technique to construct 11 well-controlled artificial shale with varying KC.These artificial shale samples were successive machined into prismatic shape for ultrasonic measurements along different directions.Observations revealed bedding perpendicular P-wave velocities are more sensitive to the increasing KC than bedding paralleling velocities due to the preferential alignments of kerogen.All elastic stiffnesses except C_(13)are generally decreasing with the increasing KC,the variation of C_(1) and C_(33)on kerogen content are more sensitive than those of C_(44)and C_(66).Apparent dynamic mechanical parameters(v and E)were found to have linear correlation with the true ones from complete anisotropic equations independent of KC,which hold value towards the interpretation of well logs consistently across formations,Anisotropic mechanical parameters(ΔE and brittlenessΔB)tend to decrease with the reducing KC,withΔB showing great sensitivity to KC variations.In the range of low KC(<10%),the V_(P)/V_(S) ratio demonstrated a linearly negative correlation with KC,and the V_(P)/V_(S) ratio magnitude of less than 1.75may serve as a significant characterization for highly organic-rich(>10%)shale,compilation of data from natural organic rich-shales globally verified the similar systematic relationships that can be empirically used to predict the fraction of KC in shales.展开更多
The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.Howeve...The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.However,these massive devices will lead to explosive traffic growth,which in turn cause great burden for the data transmission and content delivery.This challenge can be eased by sinking some critical content from cloud to edge.In this case,how to determine the critical content,where to sink and how to access the content correctly and efficiently become new challenges.This work focuses on establishing a highly efficient content delivery framework in the IoE environment.In particular,the IoE environment is re-constructed as an end-edge-cloud collaborative system,in which the concept of digital twin is applied to promote the collaboration.Based on the digital asset obtained by digital twin from end users,a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention(TPA)enabled Long Short-Term Memory(LSTM)model.Then,the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning(RL)technology.Finally,a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead.The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate,the average throughput,the successful content delivery rate and the average routing overhead.展开更多
Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge ga...Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.展开更多
The grain protein content(GPC)is the key parameter for wheat grain nutritional quality.This study conducted a resampling GWAS analysis using 406 wheat accessions across eight environments,and identified four previousl...The grain protein content(GPC)is the key parameter for wheat grain nutritional quality.This study conducted a resampling GWAS analysis using 406 wheat accessions across eight environments,and identified four previously reported GPC QTLs.An analysis of 87 landraces and 259 modern cultivars revealed the loss of superior GPC haplotypes,especially in Chinese cultivars.These haplotypes were preferentially adopted in different agroecological zones and had broad effects on wheat yield and agronomic traits.Most GPC QTLs did not significantly reduce yield,suggesting that high GPC can be achieved without a yield penalty.The results of this study provide a reference for future GPC breeding in wheat using the four identified QTLs.展开更多
The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristi...The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.展开更多
The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of ...The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of object and etalon descriptions while maintaining the required level of classification efficiency.The class to be recognized is represented by an infinite set of images obtained from the etalon by applying arbitrary geometric transformations.It is proposed to reduce the descriptions for the etalon database by selecting the most significant descriptor components according to the information content criterion.The informativeness of an etalon descriptor is estimated by the difference of the closest distances to its own and other descriptions.The developed method determines the relevance of the full description of the recognized object with the reduced description of the etalons.Several practical models of the classifier with different options for establishing the correspondence between object descriptors and etalons are considered.The results of the experimental modeling of the proposed methods for a database including images of museum jewelry are presented.The test sample is formed as a set of images from the etalon database and out of the database with the application of geometric transformations of scale and rotation in the field of view.The practical problems of determining the threshold for the number of votes,based on which a classification decision is made,have been researched.Modeling has revealed the practical possibility of tenfold reducing descriptions with full preservation of classification accuracy.Reducing the descriptions by twenty times in the experiment leads to slightly decreased accuracy.The speed of the analysis increases in proportion to the degree of reduction.The use of reduction by the informativeness criterion confirmed the possibility of obtaining the most significant subset of features for classification,which guarantees a decent level of accuracy.展开更多
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ...The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.展开更多
The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not w...The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.展开更多
The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties...The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.展开更多
Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isog...Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isogenic lines(NILs)NILL and NILH that differed at the qGWC1 locus.Lower GWC in NILL was primarily attributed to reduced grain water weight(GWW)and smaller fresh grain size,rather than the accumulation of dry matter.The difference in GWC between the NILs became more pronounced approximately 35 d after pollination(DAP),arising from a faster dehydration rate in NILL.Through an integrated analysis of the transcriptome,proteome,and metabolome,coupled with an examination of hormones and their derivatives,we detected a marked decrease in JA,along with an increase in cytokinin,storage forms of IAA(IAA-Glu,IAA-ASP),and IAA precursor IPA in immature NILL kernels.During kernel development,genes associated with sucrose synthases,starch biosynthesis,and zein production in NILL,exhibited an initial up-regulation followed by a gradual down-regulation,compared to those in NILH.This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.展开更多
Upper ocean heat content(OHC)has been widely recognized as a crucial precursor to high-impact climate variability,especially for that being indispensable to the long-term memory of the ocean.Assessing the predictabili...Upper ocean heat content(OHC)has been widely recognized as a crucial precursor to high-impact climate variability,especially for that being indispensable to the long-term memory of the ocean.Assessing the predictability of OHC using state-of-the-art climate models is invaluable for improving and advancing climate forecasts.Recently developed retrospective forecast experiments,based on a Community Earth System Model ensemble prediction system,offer a great opportunity to comprehensively explore OHC predictability.Our results indicate that the skill of actual OHC predictions varies across different oceans and diminishes as the lead time of prediction extends.The spatial distribution of the actual prediction skill closely resembles the corresponding persistence skill,indicating that the persistence of OHC serves as the primary predictive signal for its predictability.The decline in actual prediction skill is more pronounced in the Indian and Atlantic oceans than in the Pacific Ocean,particularly within tropical regions.Additionally,notable seasonal variations in the actual prediction skills across different oceans align well with the phase-locking features of OHC variability.The potential predictability of OHC generally surpasses the actual prediction skill at all lead times,highlighting significant room for improvement in current OHC predictions,especially for the North Indian Ocean and the Atlantic Ocean.Achieving such improvements necessitates a collaborative effort to enhance the quality of ocean observations,develop effective data assimilation methods,and reduce model bias.展开更多
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio...The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.展开更多
The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three diffe...The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three different methods were employed to test and estimate the UWC of saturated sandstones,including nuclear magnetic resonance(NMR),mercury intrusion porosimetry(MIP),and ultrasonic methods.The NMR method enabled the direct measurement of the UWC of sandstones using the free induction decay(FID).The MIP method was used to analyze the pore structures of sandstones,with the UWC subsequently calculated based on pore ice crystallization.Therefore,the MIP test constituted an indirect measurement method.Furthermore,a correlation was established between the P-wave velocity and the UWC of these sandstones based on the mixture theory,which could be employed to estimate the UWC as an empirical method.All methods demonstrated that the UWC initially exhibited a rapid decrease from 0C to5C and then generally became constant beyond20C.However,these test methods had different characteristics.The NMR method was used to directly and accurately calculate the UWC in the laboratory.However,the cost and complexity of NMR equipment have precluded its use in the field.The UWC can be effectively estimated by the MIP test,but the estimation accuracy is influenced by the ice crystallization process and the pore size distribution.The P-wave velocity has been demonstrated to be a straightforward and practical empirical parameter and was utilized to estimate the UWC based on the mixture theory.This method may be more suitable in the field.All methods confirmed the existence of a hysteresis phenomenon in the freezing-thawing process.The average hysteresis coefficient was approximately 0.538,thus validating the GibbseThomson equation.This study not only presents alternative methodologies for estimating the UWC of saturated sandstones but also contribute to our understanding of the freezing-thawing process of pore water.展开更多
Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a...Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.展开更多
In the era of the Internet,various network platforms have evolved into new hubs for information dissemination.Currently,China has established a platform-centered content regulation framework,wherein platforms proactiv...In the era of the Internet,various network platforms have evolved into new hubs for information dissemination.Currently,China has established a platform-centered content regulation framework,wherein platforms proactively enforce content regulations in accordance with legal censorship obligations.Additionally,platform policies and user agreements augment their authority in content regulation.The platforms can achieve cost-effective and highly efficient content regulation by leveraging their strategic advantages enabled by their own technical capabilities and extensive coverage.The platform self-regulation model,however,still faces challenges.First,accurately evaluating content remains a formidable task;second,ensuring effective platform publicity through self-regulation poses difficulties;third,users may potentially face disadvantages due to the platform’s right of self-regulation;and fourth,digital copyright owners face challenges when defending digital copyright disputes under the safe harbor rule.Therefore,it is imperative to establish,review,and revise the legal framework for content regulation of network platforms in order to enhance the efficiency of their governance systems.The formulation of the legal framework for content regulation of network platforms may encompass the following aspects:rationalizing obligations pertaining to platform content regulations,enhancing supervision over platform self-regulation,and establishing a dual-track responsibility system for digital copyright content regulation.This will ensure a harmonious balance among public interests,users’personal rights and interests,and commercial benefits through regulating the content on network platforms.展开更多
During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical propert...During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.展开更多
The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert...The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert gas arc(MIG)welding for surfacing on the TiC cermet.The results show that the increase in V content promotes the element diffusion between TiC cermet and weld metal.There are no de-fects observed in the interface,and the diffusion of elements refers to excellent metallurgical bonding.The shear strength of the fusion zone initially decreases and then increases with the increase in V content.The maximum shear strength of the TiC cermet/weld interface,reaching 552 MPa,occurred when the V content reached 0.65%.Meanwhile,the average hardness in the transition zone reached 488.2 HV0.2.展开更多
基金National Natural Science Foundation of China (No. 52204101)Natural Science Foundation of Shandong Province (No. ZR2022QE137)Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB (No. SKLGDUEK2023).
文摘Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
基金financially supported by the Ministry of Science and Higher Education of the Russian Federation(State contract GZ0110/23-10-IF)。
文摘The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total electron content(TEC),which neural network methods have recently been widely used.However,the results are mainly presented for a limited set of meridians.This paper examines the longitudinal dependence of the TEC forecast accuracy in the equatorial zone.In this case,the methods are used that provided the best accuracy on three meridians:European(30°E),Southeastern(110°E)and American(75°W).Results for the stations considered are analyzed as a function of longitude using the Jet Propulsion Laboratory Global Ionosphere Map(JPL GIM)for 2015.These results are for 2 h ahead and 24 h ahead forecast.It was found that in this case,based on the metric values,three groups of architectures can be distinguished.The first group included long short-term memory(LSTM),gated recurrent unit(GRU),and temporal convolutional networks(TCN)models as a part of unidirectional deep learning models;the second group is based on the recurrent models from the first group,which were supplemented with a bidirectional algorithm,increasing the TEC forecasting accuracy by 2-3 times.The third group,which includes the bidirectional TCN architecture(BiTCN),provided the highest accuracy.For this architecture,according to data obtained for 9 equatorial stations,practical independence of the TEC prediction accuracy from longitude was observed under the following metrics(Mean Absolute Error MAE,Root Mean Square Error RMSE,Mean Absolute Percentage Error MAPE):MAE(2 h)is 0.2 TECU approximately;MAE(24 h)is 0.4 TECU approximately;RMSE(2 h)is less than 0.5 TECU except Niue station(RMSE(2 h)is 1 TECU approximately);RMSE(24 h)is in the range of 1.0-1.7 TECU;MAPE(2 h)<1%except Darwin station,MAPE(24 h)<2%.This result was confirmed by data from additional 5 stations that formed latitudinal chains in the equatorial part of the three meridians.The complete correspondence of the observational and predicted TEC values is illustrated using several stations for disturbed conditions on December 19-22,2015,which included the strongest magnetic storm in the second half of the year(min Dst=-155 nT).
基金supported by the National Natural Science Foundation of China(42004112,42274175,42030812,41974160)Natural Science Foundation of Sichuan Province(2023NSFSC0764)。
文摘Understanding the quantitative responses of anisotropic dynamic properties in organic-rich shale with different kerogen content(KC)is of great significance in hydrocarbon exploration and development.Conducting controlled experiments with a single variable is challenging for natural shales due to their high variations in components,diagenesis conditions,or pore fluid.We employed the hot-pressing technique to construct 11 well-controlled artificial shale with varying KC.These artificial shale samples were successive machined into prismatic shape for ultrasonic measurements along different directions.Observations revealed bedding perpendicular P-wave velocities are more sensitive to the increasing KC than bedding paralleling velocities due to the preferential alignments of kerogen.All elastic stiffnesses except C_(13)are generally decreasing with the increasing KC,the variation of C_(1) and C_(33)on kerogen content are more sensitive than those of C_(44)and C_(66).Apparent dynamic mechanical parameters(v and E)were found to have linear correlation with the true ones from complete anisotropic equations independent of KC,which hold value towards the interpretation of well logs consistently across formations,Anisotropic mechanical parameters(ΔE and brittlenessΔB)tend to decrease with the reducing KC,withΔB showing great sensitivity to KC variations.In the range of low KC(<10%),the V_(P)/V_(S) ratio demonstrated a linearly negative correlation with KC,and the V_(P)/V_(S) ratio magnitude of less than 1.75may serve as a significant characterization for highly organic-rich(>10%)shale,compilation of data from natural organic rich-shales globally verified the similar systematic relationships that can be empirically used to predict the fraction of KC in shales.
基金supported by the National Key Research and Development Program of China under Grant No.2019YFB1802800the National Natural Science Foundation of China under Grant No.62002055,62032013,61872073,62202247.
文摘The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.However,these massive devices will lead to explosive traffic growth,which in turn cause great burden for the data transmission and content delivery.This challenge can be eased by sinking some critical content from cloud to edge.In this case,how to determine the critical content,where to sink and how to access the content correctly and efficiently become new challenges.This work focuses on establishing a highly efficient content delivery framework in the IoE environment.In particular,the IoE environment is re-constructed as an end-edge-cloud collaborative system,in which the concept of digital twin is applied to promote the collaboration.Based on the digital asset obtained by digital twin from end users,a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention(TPA)enabled Long Short-Term Memory(LSTM)model.Then,the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning(RL)technology.Finally,a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead.The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate,the average throughput,the successful content delivery rate and the average routing overhead.
基金supported by the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18)。
文摘Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.
基金supported by the“Integration of Two Chains”Key Research and Development Projects of Shaanxi Province“Wheat Seed Industry Innovation Project”,Chinathe Key R&D of Yangling Seed Industry Innovation Center,China(Ylzy-xm-01)。
文摘The grain protein content(GPC)is the key parameter for wheat grain nutritional quality.This study conducted a resampling GWAS analysis using 406 wheat accessions across eight environments,and identified four previously reported GPC QTLs.An analysis of 87 landraces and 259 modern cultivars revealed the loss of superior GPC haplotypes,especially in Chinese cultivars.These haplotypes were preferentially adopted in different agroecological zones and had broad effects on wheat yield and agronomic traits.Most GPC QTLs did not significantly reduce yield,suggesting that high GPC can be achieved without a yield penalty.The results of this study provide a reference for future GPC breeding in wheat using the four identified QTLs.
基金sponsored by Major Science and Technology Special Project of CNPC(Grant No.2023ZZ07)。
文摘The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.
基金This research was funded by Prince Sattam bin Abdulaziz University(Project Number PSAU/2023/01/25387).
文摘The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of object and etalon descriptions while maintaining the required level of classification efficiency.The class to be recognized is represented by an infinite set of images obtained from the etalon by applying arbitrary geometric transformations.It is proposed to reduce the descriptions for the etalon database by selecting the most significant descriptor components according to the information content criterion.The informativeness of an etalon descriptor is estimated by the difference of the closest distances to its own and other descriptions.The developed method determines the relevance of the full description of the recognized object with the reduced description of the etalons.Several practical models of the classifier with different options for establishing the correspondence between object descriptors and etalons are considered.The results of the experimental modeling of the proposed methods for a database including images of museum jewelry are presented.The test sample is formed as a set of images from the etalon database and out of the database with the application of geometric transformations of scale and rotation in the field of view.The practical problems of determining the threshold for the number of votes,based on which a classification decision is made,have been researched.Modeling has revealed the practical possibility of tenfold reducing descriptions with full preservation of classification accuracy.Reducing the descriptions by twenty times in the experiment leads to slightly decreased accuracy.The speed of the analysis increases in proportion to the degree of reduction.The use of reduction by the informativeness criterion confirmed the possibility of obtaining the most significant subset of features for classification,which guarantees a decent level of accuracy.
基金supported from the National Natural Science Foundation of China(Nos.52204356,52274342,and 52130408)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ40762 and 2021JJ40731)。
文摘The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42030804 and 42330811)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Beijing)(Fundamental Research Funds for the Central UniversitiesGrant No.2652023001)。
文摘The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.
基金This research was funded by the National Natural Science Foundation of China(51709194),Qinglan Project of Jiangsu University,the Priority Academic Program Development of Jiangsu Higher Education Institutions,and Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering.
文摘The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.
基金supported by the Jiangsu province Seed Industry Revitalization project[JBGS(2021)002]Beijing Germplasm Creation and Variety Selection and Breeding Joint Project[NY2023-180].
文摘Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isogenic lines(NILs)NILL and NILH that differed at the qGWC1 locus.Lower GWC in NILL was primarily attributed to reduced grain water weight(GWW)and smaller fresh grain size,rather than the accumulation of dry matter.The difference in GWC between the NILs became more pronounced approximately 35 d after pollination(DAP),arising from a faster dehydration rate in NILL.Through an integrated analysis of the transcriptome,proteome,and metabolome,coupled with an examination of hormones and their derivatives,we detected a marked decrease in JA,along with an increase in cytokinin,storage forms of IAA(IAA-Glu,IAA-ASP),and IAA precursor IPA in immature NILL kernels.During kernel development,genes associated with sucrose synthases,starch biosynthesis,and zein production in NILL,exhibited an initial up-regulation followed by a gradual down-regulation,compared to those in NILH.This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.
基金The National Key R&D Program of China under contract No.2020YFA0608803the Scientific Research Fund of the Second Institute of Oceanography+3 种基金Ministry of Natural Resources under contract No.QNYC2101the National Natural Science Foundation of China under contract No.42105052the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP310the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311021001。
文摘Upper ocean heat content(OHC)has been widely recognized as a crucial precursor to high-impact climate variability,especially for that being indispensable to the long-term memory of the ocean.Assessing the predictability of OHC using state-of-the-art climate models is invaluable for improving and advancing climate forecasts.Recently developed retrospective forecast experiments,based on a Community Earth System Model ensemble prediction system,offer a great opportunity to comprehensively explore OHC predictability.Our results indicate that the skill of actual OHC predictions varies across different oceans and diminishes as the lead time of prediction extends.The spatial distribution of the actual prediction skill closely resembles the corresponding persistence skill,indicating that the persistence of OHC serves as the primary predictive signal for its predictability.The decline in actual prediction skill is more pronounced in the Indian and Atlantic oceans than in the Pacific Ocean,particularly within tropical regions.Additionally,notable seasonal variations in the actual prediction skills across different oceans align well with the phase-locking features of OHC variability.The potential predictability of OHC generally surpasses the actual prediction skill at all lead times,highlighting significant room for improvement in current OHC predictions,especially for the North Indian Ocean and the Atlantic Ocean.Achieving such improvements necessitates a collaborative effort to enhance the quality of ocean observations,develop effective data assimilation methods,and reduce model bias.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.
基金supported by the National Natural Science Foundation of China(Grant No.42377191)Hubei Provincial Natural Science Foundation of China(Grant No.2021CFA094)“The 14th Five Year Plan”Hubei Provincial advantaged characteristic disciplines(groups)project of Wuhan University of Science and Technology(Grant No.2023A0303)。
文摘The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three different methods were employed to test and estimate the UWC of saturated sandstones,including nuclear magnetic resonance(NMR),mercury intrusion porosimetry(MIP),and ultrasonic methods.The NMR method enabled the direct measurement of the UWC of sandstones using the free induction decay(FID).The MIP method was used to analyze the pore structures of sandstones,with the UWC subsequently calculated based on pore ice crystallization.Therefore,the MIP test constituted an indirect measurement method.Furthermore,a correlation was established between the P-wave velocity and the UWC of these sandstones based on the mixture theory,which could be employed to estimate the UWC as an empirical method.All methods demonstrated that the UWC initially exhibited a rapid decrease from 0C to5C and then generally became constant beyond20C.However,these test methods had different characteristics.The NMR method was used to directly and accurately calculate the UWC in the laboratory.However,the cost and complexity of NMR equipment have precluded its use in the field.The UWC can be effectively estimated by the MIP test,but the estimation accuracy is influenced by the ice crystallization process and the pore size distribution.The P-wave velocity has been demonstrated to be a straightforward and practical empirical parameter and was utilized to estimate the UWC based on the mixture theory.This method may be more suitable in the field.All methods confirmed the existence of a hysteresis phenomenon in the freezing-thawing process.The average hysteresis coefficient was approximately 0.538,thus validating the GibbseThomson equation.This study not only presents alternative methodologies for estimating the UWC of saturated sandstones but also contribute to our understanding of the freezing-thawing process of pore water.
基金financial supports from National Natural Science Foundation of China(No.62205172)Huaneng Group Science and Technology Research Project(No.HNKJ22-H105)Tsinghua University Initiative Scientific Research Program and the International Joint Mission on Climate Change and Carbon Neutrality。
文摘Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.
基金This paper is a phased achievement of the key project of the Chongqing Municipal Education Commission entitled“Research on Establishment of Regional Legal Framework for Rural Revitalization”(Project No.23SKJD033)the university-level project of Southwest University of Political Science&Law entitled“A Comparative Study on Legislation for Agricultural and Rural Modernization”(Project No.DFLF2020Y12).
文摘In the era of the Internet,various network platforms have evolved into new hubs for information dissemination.Currently,China has established a platform-centered content regulation framework,wherein platforms proactively enforce content regulations in accordance with legal censorship obligations.Additionally,platform policies and user agreements augment their authority in content regulation.The platforms can achieve cost-effective and highly efficient content regulation by leveraging their strategic advantages enabled by their own technical capabilities and extensive coverage.The platform self-regulation model,however,still faces challenges.First,accurately evaluating content remains a formidable task;second,ensuring effective platform publicity through self-regulation poses difficulties;third,users may potentially face disadvantages due to the platform’s right of self-regulation;and fourth,digital copyright owners face challenges when defending digital copyright disputes under the safe harbor rule.Therefore,it is imperative to establish,review,and revise the legal framework for content regulation of network platforms in order to enhance the efficiency of their governance systems.The formulation of the legal framework for content regulation of network platforms may encompass the following aspects:rationalizing obligations pertaining to platform content regulations,enhancing supervision over platform self-regulation,and establishing a dual-track responsibility system for digital copyright content regulation.This will ensure a harmonious balance among public interests,users’personal rights and interests,and commercial benefits through regulating the content on network platforms.
基金supported by the National Natural Science Foundation of China (Grant No. 52372425)the Fundamental Research Funds for the Central Universities (Science and Technology Leading Talent Team Poject) Grant No. 2022JBXT010。
文摘During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.
基金supported by Henan Province Key Research and Development and Promotion Project(Grant No.201ZP20220010).
文摘The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert gas arc(MIG)welding for surfacing on the TiC cermet.The results show that the increase in V content promotes the element diffusion between TiC cermet and weld metal.There are no de-fects observed in the interface,and the diffusion of elements refers to excellent metallurgical bonding.The shear strength of the fusion zone initially decreases and then increases with the increase in V content.The maximum shear strength of the TiC cermet/weld interface,reaching 552 MPa,occurred when the V content reached 0.65%.Meanwhile,the average hardness in the transition zone reached 488.2 HV0.2.