Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for opti...Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system w...Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.展开更多
In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter ...In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter are added to input circuit of the inverter.Single-phrase full-bridge inverter performs the function of converting direct current into alternating current(DC/AC).In the control circuit,single chip micyoco(SCM)AT89C2051 is used for main control chip to accomplish the hardware design of the control system.A given value of output frequency of the inverter is input in the way of coding.According to the output frequency code which is read,SCM AT89C2051 defined harmonic elimination PWM control data which will be selected.Through internal timing control,the switches are switched under this provision of PWM control data.Then the driving signals of the switches in the inverter are output from I/O of SCM AT89C2051 to realize harmonic elimination PWM control.The results show that adding Newton homotopic algorithm of harmonic elimination PWM control to corresponding software of the control system can make the quality of output voltage of the inverter higher and it will have broad application prospects.展开更多
A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of...A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of the conventional electrified railway. Due to the large number of MMCACTPS system modules, I/O resources and computing speed have high requirements on processors. Moreover, the module capacitor balance is challenging because the sorting time is too long when the traditional sorting algorithm for voltage balance is used. To solve the above issues, a digital implementation scheme of flexible power control strategy for three-phase to single-phase MMC-ACTPS system based on field programmable gate array(FPGA), which has sufficient I/O resources, has been proposed. Due to the parallel execution characteristics of the FPGA, the execution time of the controller and the modulator can be greatly reduced compared with a digital signal processor(DSP) + FPGA or DSpace. In addition, an improved sorting algorithm is proposed to reduce the sorting time and the implementation steps are analyzed. Finally, simulation and experimental results are presented to demonstrate the effectiveness and correctness of the proposed control strategy.展开更多
Inertial piezoelectric actuators are widely applied in precision devices with simple structure and accurate movement.However,existing inertial piezoelectric actuators still face the challenges of rollback motion and b...Inertial piezoelectric actuators are widely applied in precision devices with simple structure and accurate movement.However,existing inertial piezoelectric actuators still face the challenges of rollback motion and bulky power supply.In this work,an alternate excitation strategy and a customized small power supply for a bimorph rotary piezoelectric actuator(BRPA)are proposed to solve the problems.The BRPA prototype is designed with a bipedal symmetrical structure,measuring 35 mm in height and 32 mm in diameter,which has a maximum rotation velocity of 0.247 rad/s and a resolution of 0.66μrad.Thanks to the bipedal symmetrical structure,the friction directions between the driving feet and the rotor can be coordinated to suppress the rollback.The rollback ratio is almost zero when the phase difference of the exciting signal is set as 180°.The customized power supply is designed and manufactured,whose size is 58 mm×56 mm×46 mm.It can output signals for the single step mode and the continuous mode,and they are adopted to excite BRPA to achieve a small stroke with one single step and a large stroke with continuous step,respectively.Then,an experimental system for optical fiber alignment is developed based on the BRPA and the customized small power supply,the experiment has verified the practicability of this work in the precision fields,especially in the miniaturized precision systems.展开更多
文摘Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金supported by the National Natural Science Funds of China (Nos. 51307143 and 51307142)Technology Research and Development Program of China Railway Corporation (No. 2014J009-B)
文摘Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.
文摘In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter are added to input circuit of the inverter.Single-phrase full-bridge inverter performs the function of converting direct current into alternating current(DC/AC).In the control circuit,single chip micyoco(SCM)AT89C2051 is used for main control chip to accomplish the hardware design of the control system.A given value of output frequency of the inverter is input in the way of coding.According to the output frequency code which is read,SCM AT89C2051 defined harmonic elimination PWM control data which will be selected.Through internal timing control,the switches are switched under this provision of PWM control data.Then the driving signals of the switches in the inverter are output from I/O of SCM AT89C2051 to realize harmonic elimination PWM control.The results show that adding Newton homotopic algorithm of harmonic elimination PWM control to corresponding software of the control system can make the quality of output voltage of the inverter higher and it will have broad application prospects.
基金supported in part by the National Rail Transportation Electrification and Automation Engineering Technology Research Center (No.NEEC-2019-A04)in part by the National Key R&D Program of China (No.2021YFB2601500)+1 种基金in part by the National Natural Science Foundation of China (No.52077183)the National Science Foundation for Young Scientists of China (No.52207138)。
文摘A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of the conventional electrified railway. Due to the large number of MMCACTPS system modules, I/O resources and computing speed have high requirements on processors. Moreover, the module capacitor balance is challenging because the sorting time is too long when the traditional sorting algorithm for voltage balance is used. To solve the above issues, a digital implementation scheme of flexible power control strategy for three-phase to single-phase MMC-ACTPS system based on field programmable gate array(FPGA), which has sufficient I/O resources, has been proposed. Due to the parallel execution characteristics of the FPGA, the execution time of the controller and the modulator can be greatly reduced compared with a digital signal processor(DSP) + FPGA or DSpace. In addition, an improved sorting algorithm is proposed to reduce the sorting time and the implementation steps are analyzed. Finally, simulation and experimental results are presented to demonstrate the effectiveness and correctness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(Grant Nos.52105015 and 52225501)the China Postdoctoral Science Foundation(Grant No.2021M690830)the Postdoctoral Science Foundation of Heilongjiang Province,China(Grant No.LBH-Z21018)。
文摘Inertial piezoelectric actuators are widely applied in precision devices with simple structure and accurate movement.However,existing inertial piezoelectric actuators still face the challenges of rollback motion and bulky power supply.In this work,an alternate excitation strategy and a customized small power supply for a bimorph rotary piezoelectric actuator(BRPA)are proposed to solve the problems.The BRPA prototype is designed with a bipedal symmetrical structure,measuring 35 mm in height and 32 mm in diameter,which has a maximum rotation velocity of 0.247 rad/s and a resolution of 0.66μrad.Thanks to the bipedal symmetrical structure,the friction directions between the driving feet and the rotor can be coordinated to suppress the rollback.The rollback ratio is almost zero when the phase difference of the exciting signal is set as 180°.The customized power supply is designed and manufactured,whose size is 58 mm×56 mm×46 mm.It can output signals for the single step mode and the continuous mode,and they are adopted to excite BRPA to achieve a small stroke with one single step and a large stroke with continuous step,respectively.Then,an experimental system for optical fiber alignment is developed based on the BRPA and the customized small power supply,the experiment has verified the practicability of this work in the precision fields,especially in the miniaturized precision systems.