Nature's contributions to people(NCP)encompass both the beneficial and detrimental effects of living nature on human quality of life,including regulatory,material,and non-material contributions.Globally,vital NCPs...Nature's contributions to people(NCP)encompass both the beneficial and detrimental effects of living nature on human quality of life,including regulatory,material,and non-material contributions.Globally,vital NCPs have been deteriorating,accelerated by changes in both natural and anthropogenic drivers over recent decades.Despite the often inevitable trade-offs between NCPs due to their spatially and temporally uneven distributions,few studies have quantitatively assessed the impacts of different drivers on the spatial and temporal changes in multiple NCPs and their interrelationships.Here we evaluate the effects of precipitation,temperature,population,gross domestic product,vegetation restoration,and urban expansion on four key regulatory NCPs-habitat maintenance,climate regulation,water quantity regulation,and soil protection-in Nei Mongol at the county level.We observe increasing trends in climate regulation and soil protection from 2000 to 2019,contrasted with declining trends in habitat maintenance and water quantity regulation.We have identified the dominant positive and negative drivers influencing each NCP across individual counties,finding that natural drivers predominantly overpowered anthropogenic drivers.Furthermore,we discover significant spatial disparities in the tradeoff or synergy relationships between NCPs across the counties.Our findings illustrate how the impacts of various drivers on NCPs and their interrelationships can be quantitatively evaluated,offering significant potential for application in various spatial scales.With an understanding of trade-offs and scale effects,these insights are expected to support and inform policymaking at both county and provincial levels.展开更多
Long-term stereoscopic observations of aerosol,NO2,and HCHO were carried out at the Yangmeikeng(YMK)site in Shenzhen.Aerosol optical depths and NO2 vertical column concentration(NO2 VCD)derived from MAX-DOAS were foun...Long-term stereoscopic observations of aerosol,NO2,and HCHO were carried out at the Yangmeikeng(YMK)site in Shenzhen.Aerosol optical depths and NO2 vertical column concentration(NO2 VCD)derived from MAX-DOAS were found to be consistent with other datasets.The total NO2 VCD values of the site remained low,varying from 2×10^(15)to 8×10^(15)mol/cm^(2),while the HCHO VCD was higher than NO2 VCD,varying from 7×10^(15)to 11×10^(15)mol/cm^(2).HCHO VCD was higher from September to early November than that was from mid-late November to December and during February 2021,in contrast,NO2 VCD did not change much during the same period.In January,NO2 VCD and HCHO VCD were both fluctuating drastically.High temperature and HCHO level in the YMK site is not only driving the ozone production up but alsomay be driving up the ozone concentration as well,and the O_(3)production regime in the YMK site tends to be NOx-limited.At various altitudes,backward trajectory clustering analysis and Potential Source Contribution Function(PSCF)were utilized to identify possible NO2 and HCHO source locations.The results suggested that the Huizhou-Shanwei border and the Daya Bay Sea area were the key potential source locations in the lower(200 m)and middle(500 m)atmosphere(WPSCF>0.6).The WPSCF valuewas high at the 1000maltitude whichwas closer to the YMKsite than the near ground,indicating that the pollution transport capability in the upper atmosphere was limited.展开更多
Volatile organic compounds(VOCs)are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer fr...Volatile organic compounds(VOCs)are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing,the environmental impact and health risk of VOC were assessed.In the winter polluted days,the secondary organic aerosol formation potential(SOAP)of VOC(199.70±15.05 mg/m^3)was significantly higher than that on other days.And aromatics were the primary contributor(98.03%)to the SOAP during the observation period.Additionally,the result of the ozone formation potential(OFP)showed that ethylene contributed the most to OFP in winter(26.00%and 27.64%on the normal and polluted days).In summer,however,acetaldehyde was the primary contributor to OFP(22.00%and 21.61%on the normal and polluted days).Simultaneously,study showed that hazard ratios and lifetime cancer risk values of acrolein,chloroform,benzene,1,2-dichloroethane,acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA,thereby presenting a health risk to the residents.Besides,the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing.The ratio of m-/p-xylene-toethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter.Finally,according to the potential source contribution function(PSCF)results,compared with local pollution sources,the spread of pollution from long-distance VOCs had a greater impact on Beijing.展开更多
Hourly PM2.5 concentrations were observed simultaneously at a cities-cluster comprising 10 cities/towns in Hebei province in China from July 1 to 31, 2008. Among the 10 cities/towns, Baoding showed the high- est avera...Hourly PM2.5 concentrations were observed simultaneously at a cities-cluster comprising 10 cities/towns in Hebei province in China from July 1 to 31, 2008. Among the 10 cities/towns, Baoding showed the high- est average concentration level (161.57μg/m3) and Yanjiao exhibited the lowest (99.35 μg/m3 ). These observed data were also studied using the joint potential source contribution function with 24-h and 72-h backward trajectories, to identify more clearly the local and countrywide-scale long-range transport sources. For the local sources, three important influential areas were found, whereas five important influential areas were defined for long-range transport sources. Spatial characteristics of PM2.5 were determined by multivariate statistical analyses. Soil dust, coal combustion, and vehicle emissions might be the potential contributors in these areas. The results of a hierarchical cluster analysis for back trajectory endpoints and PM2.s concentrations datasets show that the spatial characteristics of PM2.5 in the cities-cluster were influenced not only by local sources, but also by long-range transport sources. Different cities in the cities-cluster obtained different weighted contributions from local or long-range transport sources. Cangzhou, Shijiazhuang, and Baoding are near the source areas in the south of Hebei province, whereas Zhuozhou, Yangfang, Yanjiao, Xianghe, and Langfang are close to the sources areas near Beijing and Tianjin.展开更多
基金supported by the National Natural Science Foundation of China(41991233)the Key Science and Technology Special Program of Inner Mongolia Autonomous Region(2021ZD0015).
文摘Nature's contributions to people(NCP)encompass both the beneficial and detrimental effects of living nature on human quality of life,including regulatory,material,and non-material contributions.Globally,vital NCPs have been deteriorating,accelerated by changes in both natural and anthropogenic drivers over recent decades.Despite the often inevitable trade-offs between NCPs due to their spatially and temporally uneven distributions,few studies have quantitatively assessed the impacts of different drivers on the spatial and temporal changes in multiple NCPs and their interrelationships.Here we evaluate the effects of precipitation,temperature,population,gross domestic product,vegetation restoration,and urban expansion on four key regulatory NCPs-habitat maintenance,climate regulation,water quantity regulation,and soil protection-in Nei Mongol at the county level.We observe increasing trends in climate regulation and soil protection from 2000 to 2019,contrasted with declining trends in habitat maintenance and water quantity regulation.We have identified the dominant positive and negative drivers influencing each NCP across individual counties,finding that natural drivers predominantly overpowered anthropogenic drivers.Furthermore,we discover significant spatial disparities in the tradeoff or synergy relationships between NCPs across the counties.Our findings illustrate how the impacts of various drivers on NCPs and their interrelationships can be quantitatively evaluated,offering significant potential for application in various spatial scales.With an understanding of trade-offs and scale effects,these insights are expected to support and inform policymaking at both county and provincial levels.
基金supported by the National Natural Science Foundation of China(No.41775029)the National Key Research and Development Project of China(No.2018YFC0213201)the Science and Technology Commission of Shanghai Municipality(No.17DZ1203102).
文摘Long-term stereoscopic observations of aerosol,NO2,and HCHO were carried out at the Yangmeikeng(YMK)site in Shenzhen.Aerosol optical depths and NO2 vertical column concentration(NO2 VCD)derived from MAX-DOAS were found to be consistent with other datasets.The total NO2 VCD values of the site remained low,varying from 2×10^(15)to 8×10^(15)mol/cm^(2),while the HCHO VCD was higher than NO2 VCD,varying from 7×10^(15)to 11×10^(15)mol/cm^(2).HCHO VCD was higher from September to early November than that was from mid-late November to December and during February 2021,in contrast,NO2 VCD did not change much during the same period.In January,NO2 VCD and HCHO VCD were both fluctuating drastically.High temperature and HCHO level in the YMK site is not only driving the ozone production up but alsomay be driving up the ozone concentration as well,and the O_(3)production regime in the YMK site tends to be NOx-limited.At various altitudes,backward trajectory clustering analysis and Potential Source Contribution Function(PSCF)were utilized to identify possible NO2 and HCHO source locations.The results suggested that the Huizhou-Shanwei border and the Daya Bay Sea area were the key potential source locations in the lower(200 m)and middle(500 m)atmosphere(WPSCF>0.6).The WPSCF valuewas high at the 1000maltitude whichwas closer to the YMKsite than the near ground,indicating that the pollution transport capability in the upper atmosphere was limited.
基金supported by the National Key R&D Program of China(No.2016YFC0202500)the National Natural Science Foundation of China(Nos.21677163 and 21876193)+1 种基金the Chengdu Science and Technology Project(No.2018-ZM01-00019-SN)the Youth Innovation Promotion Association CAS。
文摘Volatile organic compounds(VOCs)are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing,the environmental impact and health risk of VOC were assessed.In the winter polluted days,the secondary organic aerosol formation potential(SOAP)of VOC(199.70±15.05 mg/m^3)was significantly higher than that on other days.And aromatics were the primary contributor(98.03%)to the SOAP during the observation period.Additionally,the result of the ozone formation potential(OFP)showed that ethylene contributed the most to OFP in winter(26.00%and 27.64%on the normal and polluted days).In summer,however,acetaldehyde was the primary contributor to OFP(22.00%and 21.61%on the normal and polluted days).Simultaneously,study showed that hazard ratios and lifetime cancer risk values of acrolein,chloroform,benzene,1,2-dichloroethane,acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA,thereby presenting a health risk to the residents.Besides,the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing.The ratio of m-/p-xylene-toethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter.Finally,according to the potential source contribution function(PSCF)results,compared with local pollution sources,the spread of pollution from long-distance VOCs had a greater impact on Beijing.
基金supported by the "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (XDB05030103)the National Natural Science Foundation of China (71103098 and 21207070)the Fundamental Research Funds for the Central Universities and the Combined Laboratory of the Tianjin Meteorological Bureau
文摘Hourly PM2.5 concentrations were observed simultaneously at a cities-cluster comprising 10 cities/towns in Hebei province in China from July 1 to 31, 2008. Among the 10 cities/towns, Baoding showed the high- est average concentration level (161.57μg/m3) and Yanjiao exhibited the lowest (99.35 μg/m3 ). These observed data were also studied using the joint potential source contribution function with 24-h and 72-h backward trajectories, to identify more clearly the local and countrywide-scale long-range transport sources. For the local sources, three important influential areas were found, whereas five important influential areas were defined for long-range transport sources. Spatial characteristics of PM2.5 were determined by multivariate statistical analyses. Soil dust, coal combustion, and vehicle emissions might be the potential contributors in these areas. The results of a hierarchical cluster analysis for back trajectory endpoints and PM2.s concentrations datasets show that the spatial characteristics of PM2.5 in the cities-cluster were influenced not only by local sources, but also by long-range transport sources. Different cities in the cities-cluster obtained different weighted contributions from local or long-range transport sources. Cangzhou, Shijiazhuang, and Baoding are near the source areas in the south of Hebei province, whereas Zhuozhou, Yangfang, Yanjiao, Xianghe, and Langfang are close to the sources areas near Beijing and Tianjin.