As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary e...As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.展开更多
For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two no...For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.展开更多
In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation...In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved.展开更多
Land degradation has a major impact on environmental and socio-economic sustainability. Scientific methods are necessary to monitor the risk of land degradation. In this study, the environmental sensitive area index(E...Land degradation has a major impact on environmental and socio-economic sustainability. Scientific methods are necessary to monitor the risk of land degradation. In this study, the environmental sensitive area index(ESAI) was utilized to assess land degradation sensitivity and convergence analysis in Korla, a typical oasis city in Xinjiang of China, which is located on the northeast border of the Tarim Basin. A total of 18 indicators depicting soil, climate, vegetation, and management qualities were used to illustrate spatial-temporal patterns of land degradation sensitivity from 1994 to 2018. We investigated the causes of spatial convergence and divergence based on the Ordinary Least Squares(OLS) and Geographically Weighted Regression(GWR) models. The results show that the branch of the Tianshan Mountains and oasis plain had a low sensitivity to land degradation, while the Tarim Basin had a high risk of land degradation. More than two-thirds of the study area can be categorized as "critical" sensitivity classes. The largest percentage(32.6%) of fragile classes was observed for 2006. There was no significant change in insensitive or low-sensitivity areas, which accounted for less than 0.4% of the entire observation period. The ESAI of the four time periods(1994–1998, 1998–2006, 2006–2010, and 2010–2018) formed a series of convergence patterns. The convergence patterns of 1994–1998 and 1998–2006 can be explained by the government's efforts to "Returning Farmland to Forests" and other governance projects. In 2006–2010, the construction of afforested work intensified, but industrial development and human activities affected the convergence pattern. The pattern of convergence in most regions between 2010 and 2018 can be attributed to the government's implementation of a series of key ecological protection projects, which led to a decrease in sensitivity to land degradation. The results of this study altogether suggest that the ESAI convergence analysis is an effective early warning method for land degradation sensitivity.展开更多
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
In this article we use Chebyshev spectral collocation method to deal with the Volterra integral equation which has two kinds of delay items. We use linear transformation to make the interval into a fixed interval [-1,...In this article we use Chebyshev spectral collocation method to deal with the Volterra integral equation which has two kinds of delay items. We use linear transformation to make the interval into a fixed interval [-1, 1]. Then we use the Gauss quadrature formula to approximate the solution. With the help of lemmas, we get the result that the numerical error decay exponentially in the infinity norm and the Chebyshev weighted Hilbert space norm. Some numerical experiments are given to confirm our theoretical prediction.展开更多
The M?ller algorithm is a self-stabilizing minor component analysis algorithm.This research document involves the study of the convergence and dynamic characteristics of the M?ller algorithm using the deterministic di...The M?ller algorithm is a self-stabilizing minor component analysis algorithm.This research document involves the study of the convergence and dynamic characteristics of the M?ller algorithm using the deterministic discrete time(DDT)methodology.Unlike other analysis methodologies,the DDT methodology is capable of serving the distinct time characteristic and having no constraint conditions.Through analyzing the dynamic characteristics of the weight vector,several convergence conditions are drawn,which are beneficial for its application.The performing computer simulations and real applications demonstrate the correctness of the analysis’s conclusions.展开更多
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no...With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.展开更多
In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a h...In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.展开更多
Kernel learning forward backward stochastic differential equations(FBSDE)filter is an iterative and adaptive meshfree approach to solve the non-linear filtering problem.It builds from forward backward SDE for Fokker-P...Kernel learning forward backward stochastic differential equations(FBSDE)filter is an iterative and adaptive meshfree approach to solve the non-linear filtering problem.It builds from forward backward SDE for Fokker-Planker equation,which defines evolving density for the state variable,and employs kernel density estimation(KDE)to approximate density.This algo-rithm has shown more superior performance than mainstream particle filter method,in both convergence speed and efficiency of solving high dimension problems.However,this method has only been shown to converge empirically.In this paper,we present a rigorous analysis to demonstrate its local and global convergence,and provide theoretical support for its empirical results.展开更多
The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equatio...The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm the theoretical prediction of the exponential rate of convergence. The result in this work seems to be the first successful spectral approach (with theoretical justification) for the Volterra type equations.展开更多
The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations...The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations(FDEs)with Caputo derivatives,is an efficient and stable scheme.We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order indexα>0.展开更多
This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 20...This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233:938 950], the error analysis for this approach is carried out for 0 〈 μ 〈 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a technical problem to extend the result to the case of Abel-type, i.e., μ = 1/2. In this work, we will not only extend the convergence analysis by Chen and Tang to the Abel-ype but also establish the error estimates under a more general regularity assumption on the exact solution.展开更多
In this paper, we are devoted to the convergence analysis of algorithms forgeneralized set-valued variational inclusions in Banach spaces. Our results improve, extend,and develop the earlier and recent corresponding r...In this paper, we are devoted to the convergence analysis of algorithms forgeneralized set-valued variational inclusions in Banach spaces. Our results improve, extend,and develop the earlier and recent corresponding results.展开更多
In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ...In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and D6fler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic partial equations is proved. Our analysis is effective for all conforming Qm elements which covers both the two- and three-dimensional cases in a unified fashion.展开更多
A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach.We provide a rigorous error analysis for the proposed methods,which shows that t...A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach.We provide a rigorous error analysis for the proposed methods,which shows that the numerical errors decay exponentially in the L∞-norm and L2-norm.Numerical examples illustrate the convergence and effectiveness of the numerical methods.展开更多
The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying...The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.展开更多
We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extension...We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extensions to equations with more general (nonlinear) vanishing delays are also discussed.展开更多
Based on Feng's theory of formal vector fields and formal flows, we study the convergence problem of the formal energies of symplectic methods for Hamiltonian systems and give the clear growth of the coefficients ...Based on Feng's theory of formal vector fields and formal flows, we study the convergence problem of the formal energies of symplectic methods for Hamiltonian systems and give the clear growth of the coefficients in the formal energies. With the help of B-series and Bernoulli functions, we prove that in the formal energy of the mid-point rule, the coefficient sequence of the merging products of an arbitrarily given rooted tree and the bushy trees of height 1(whose subtrees are vertices), approaches 0 as the number of branches goes to ∞; in the opposite direction, the coefficient sequence of the bushy trees of height m(m ≥ 2), whose subtrees are all tall trees, approaches ∞ at large speed as the number of branches goes to +∞. The conclusion extends successfully to the modified differential equations of other Runge-Kutta methods. This disproves a conjecture given by Tang et al.(2002), and implies:(1) in the inequality of estimate given by Benettin and Giorgilli(1994) for the terms of the modified formal vector fields, the high order of the upper bound is reached in numerous cases;(2) the formal energies/formal vector fields are nonconvergent in general case.展开更多
Let C be a nonempty closed convex subset of a real Banach space E. Let S : C→ C be a quasi-nonexpansive mapping, let T : C→C be an asymptotically demicontractive and uniformly Lipschitzian mapping, and let F := ...Let C be a nonempty closed convex subset of a real Banach space E. Let S : C→ C be a quasi-nonexpansive mapping, let T : C→C be an asymptotically demicontractive and uniformly Lipschitzian mapping, and let F := {x ∈C : Sx = x and Tx = x}≠Ф Let {xn}n≥0 be the sequence generated irom an arbitrary x0∈Cby xn+i=(1-cn)Sxn+cnT^nxn, n≥0.We prove the necessary and sufficient conditions for the strong convergence of the iterative sequence {xn} to an element of F. These extend and improve the recent results of Moore and Nnoli.展开更多
文摘As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.
基金Supported by the National Natural Science Foundation of China(11201422)the Natural Science Foundation of Zhejiang Province(Y6110639,LQ12A01017)
文摘For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.
文摘In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved.
基金supported by the National Key Research and Development Program of China (2017YFB0504203)the Central Government Guides Local Development Special Fund (2017L3012)the National Natural Science Foundation of China (41771468, 41471362)。
文摘Land degradation has a major impact on environmental and socio-economic sustainability. Scientific methods are necessary to monitor the risk of land degradation. In this study, the environmental sensitive area index(ESAI) was utilized to assess land degradation sensitivity and convergence analysis in Korla, a typical oasis city in Xinjiang of China, which is located on the northeast border of the Tarim Basin. A total of 18 indicators depicting soil, climate, vegetation, and management qualities were used to illustrate spatial-temporal patterns of land degradation sensitivity from 1994 to 2018. We investigated the causes of spatial convergence and divergence based on the Ordinary Least Squares(OLS) and Geographically Weighted Regression(GWR) models. The results show that the branch of the Tianshan Mountains and oasis plain had a low sensitivity to land degradation, while the Tarim Basin had a high risk of land degradation. More than two-thirds of the study area can be categorized as "critical" sensitivity classes. The largest percentage(32.6%) of fragile classes was observed for 2006. There was no significant change in insensitive or low-sensitivity areas, which accounted for less than 0.4% of the entire observation period. The ESAI of the four time periods(1994–1998, 1998–2006, 2006–2010, and 2010–2018) formed a series of convergence patterns. The convergence patterns of 1994–1998 and 1998–2006 can be explained by the government's efforts to "Returning Farmland to Forests" and other governance projects. In 2006–2010, the construction of afforested work intensified, but industrial development and human activities affected the convergence pattern. The pattern of convergence in most regions between 2010 and 2018 can be attributed to the government's implementation of a series of key ecological protection projects, which led to a decrease in sensitivity to land degradation. The results of this study altogether suggest that the ESAI convergence analysis is an effective early warning method for land degradation sensitivity.
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
基金Supported by Guangdong Provincial Education Projects(2021KTSCX071,HSGDJG21356-372)Project of Hanshan Normal University(521036).
文摘In this article we use Chebyshev spectral collocation method to deal with the Volterra integral equation which has two kinds of delay items. We use linear transformation to make the interval into a fixed interval [-1, 1]. Then we use the Gauss quadrature formula to approximate the solution. With the help of lemmas, we get the result that the numerical error decay exponentially in the infinity norm and the Chebyshev weighted Hilbert space norm. Some numerical experiments are given to confirm our theoretical prediction.
基金supported by the National Natural Science Foundation of China(61903375,61673387,61374120)Shaanxi Province Natural Science Foundation(2016JM6015)。
文摘The M?ller algorithm is a self-stabilizing minor component analysis algorithm.This research document involves the study of the convergence and dynamic characteristics of the M?ller algorithm using the deterministic discrete time(DDT)methodology.Unlike other analysis methodologies,the DDT methodology is capable of serving the distinct time characteristic and having no constraint conditions.Through analyzing the dynamic characteristics of the weight vector,several convergence conditions are drawn,which are beneficial for its application.The performing computer simulations and real applications demonstrate the correctness of the analysis’s conclusions.
基金supported by the National Natural Science Foundation of China(6100115361271415+4 种基金6140149961531015)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)
文摘With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.
基金supported by the Project of the National Key R&D Program(Grant No.2021YFA1000202)National Natural Science Foundation of China(Grant Nos.12120101001,12001326 and 12171283)+2 种基金Natural Science Foundation of Shandong Province(Grant Nos.ZR2021ZD03,ZR2020QA032 and ZR2019ZD42)China Postdoctoral Science Foundation(Grant Nos.BX20190191 and 2020M672038)the Startup Fund from Shandong University(Grant No.11140082063130)。
文摘In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.
基金supported by the U.S.National Science Foundation through Project DMS-2142672by the U.S.Department of Energy,Office of Science,Office of Advanced Scientific Computing Research,Applied Mathematics Program under Grant DE-SC0022297.
文摘Kernel learning forward backward stochastic differential equations(FBSDE)filter is an iterative and adaptive meshfree approach to solve the non-linear filtering problem.It builds from forward backward SDE for Fokker-Planker equation,which defines evolving density for the state variable,and employs kernel density estimation(KDE)to approximate density.This algo-rithm has shown more superior performance than mainstream particle filter method,in both convergence speed and efficiency of solving high dimension problems.However,this method has only been shown to converge empirically.In this paper,we present a rigorous analysis to demonstrate its local and global convergence,and provide theoretical support for its empirical results.
基金supported by CERG Grants of Hong Kong Research Grant CouncilFRG grants of Hong Kong Baptist University
文摘The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm the theoretical prediction of the exponential rate of convergence. The result in this work seems to be the first successful spectral approach (with theoretical justification) for the Volterra type equations.
基金supported by the State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences and by Hunan Key Laboratory for Computation and Simulation in Science and Engineering,by National Natural Science Foundation of China(Grant Nos.60931002,11001072 and 11026154)partially by the Spanish Ministry of Science and Innovation under Grant AYA2009-14212-C05-05.
文摘The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations(FDEs)with Caputo derivatives,is an efficient and stable scheme.We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order indexα>0.
文摘This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233:938 950], the error analysis for this approach is carried out for 0 〈 μ 〈 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a technical problem to extend the result to the case of Abel-type, i.e., μ = 1/2. In this work, we will not only extend the convergence analysis by Chen and Tang to the Abel-ype but also establish the error estimates under a more general regularity assumption on the exact solution.
基金This subject is supported both by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Educations of MOE,P.R.C.,and by the National Natural Science Foundation of China(19801023)
文摘In this paper, we are devoted to the convergence analysis of algorithms forgeneralized set-valued variational inclusions in Banach spaces. Our results improve, extend,and develop the earlier and recent corresponding results.
基金supported by the Special Funds for Major State Basic Research Project (No. 2005CB321701)
文摘In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and D6fler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic partial equations is proved. Our analysis is effective for all conforming Qm elements which covers both the two- and three-dimensional cases in a unified fashion.
基金the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008),National Science Foundation of China(10971074).
文摘A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach.We provide a rigorous error analysis for the proposed methods,which shows that the numerical errors decay exponentially in the L∞-norm and L2-norm.Numerical examples illustrate the convergence and effectiveness of the numerical methods.
基金This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074).
文摘The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.
文摘We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extensions to equations with more general (nonlinear) vanishing delays are also discussed.
基金supported by National Natural Science Foundation of China(Grant No.11371357)the Marine Public Welfare Project of China(Grant No.201105032)
文摘Based on Feng's theory of formal vector fields and formal flows, we study the convergence problem of the formal energies of symplectic methods for Hamiltonian systems and give the clear growth of the coefficients in the formal energies. With the help of B-series and Bernoulli functions, we prove that in the formal energy of the mid-point rule, the coefficient sequence of the merging products of an arbitrarily given rooted tree and the bushy trees of height 1(whose subtrees are vertices), approaches 0 as the number of branches goes to ∞; in the opposite direction, the coefficient sequence of the bushy trees of height m(m ≥ 2), whose subtrees are all tall trees, approaches ∞ at large speed as the number of branches goes to +∞. The conclusion extends successfully to the modified differential equations of other Runge-Kutta methods. This disproves a conjecture given by Tang et al.(2002), and implies:(1) in the inequality of estimate given by Benettin and Giorgilli(1994) for the terms of the modified formal vector fields, the high order of the upper bound is reached in numerous cases;(2) the formal energies/formal vector fields are nonconvergent in general case.
基金the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE,Chinathe Dawn Program Foundation in Shanghai and partially supported by grant from the National Science Council of Taiwan
文摘Let C be a nonempty closed convex subset of a real Banach space E. Let S : C→ C be a quasi-nonexpansive mapping, let T : C→C be an asymptotically demicontractive and uniformly Lipschitzian mapping, and let F := {x ∈C : Sx = x and Tx = x}≠Ф Let {xn}n≥0 be the sequence generated irom an arbitrary x0∈Cby xn+i=(1-cn)Sxn+cnT^nxn, n≥0.We prove the necessary and sufficient conditions for the strong convergence of the iterative sequence {xn} to an element of F. These extend and improve the recent results of Moore and Nnoli.