期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Consensus of multi-vehicle cooperative attack with stochastic multi-hop time-varying delay and actuator fault 被引量:1
1
作者 CAI Guangbin ZHAO Yushan +1 位作者 ZHAO Yang HU Changhua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期228-242,共15页
A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stoc... A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective. 展开更多
关键词 leader-following multi-vehicle cooperative attack(MVCA) switching topology fault-tolerant control stochastic multi-hop time-varying delay stochastic actuator fault
下载PDF
UAVs cooperative task assignment and trajectory optimization with safety and time constraints 被引量:2
2
作者 Duo Zheng Yun-fei Zhang +1 位作者 Fan Li Peng Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期149-161,共13页
This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight enviro... This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight environment for aerial vehicles.Delaunay-Map,Safe Flight Corridor(SFC),and Relative Safe Flight Corridor(RSFC)are applied to ensure each UAV flight trajectory's safety.By using such techniques,it is possible to avoid the collision with obstacles and collision between UAVs.Bezier-curve is further developed to ensure that multi-UAVs can simultaneously reach the target at the specified time,and the trajectory is within the flight corridor.The trajectory tracking controller is also designed based on model predictive control to track the planned trajectory accurately.The simulation and experiment results are presented to verifying developed strategies of Multi-UAV cooperative attacks. 展开更多
关键词 MULTI-UAV cooperative attacks Task assignment Trajectory optimization Safety constraints
下载PDF
Coalition Formation for Multiple UAVs Cooperative Search and Attack with Communication Constraints in Unknown Environment 被引量:4
3
作者 Liu Zhong Gao Xiaoguang Fu Xiaowei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第6期688-699,共12页
A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and at... A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and attack missions.The mathematic model of coalition formation is built on basis of the minimum attacking time and the minimum coalition size with satisfying resources and simultaneous strikes requirements.A communication protocol based on maximum number of hops is developed to determine the potential coalition members in dynamic network.A multistage sub-optimal coalition formation algorithm(MSOCFA)with polynomial time is established.The performances of MSOCFA and particle swarm optimization(PSO)algorithms are compared in terms of complexity,mission performance and computational time.A complex scenario is deployed to illustrate how the coalitions are formed and validate the feasibility of the MSOCFA.The effect of communication constraints(hop delay and max-hops)on mission performance is studied.The results show that it is beneficial to determine potential coalition members in a wide and deep range over the network in the presence of less delay.However,when the delays are significant,it is more advantageous to determine coalitions from among the immediate neighbors. 展开更多
关键词 multi-unmmaned aerial vehicles(UAVs) cooperative search and attack coalition formation communication constraints
下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
4
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
下载PDF
HEURISTIC QUANTUM GENETIC ALGORITHM FOR AIR COMBAT DECISION MAKING ON COOPERATIVE MULTIPLE TARGET ATTACK
5
作者 HAIPENG KONG NI LI 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2013年第4期44-61,共18页
In order to achieve the optimal attack outcome in the air combat under the beyond visual range(BVR)condition,the decision-making(DM)problem which is to set a proper assignment for the friendly fighters on the hostile ... In order to achieve the optimal attack outcome in the air combat under the beyond visual range(BVR)condition,the decision-making(DM)problem which is to set a proper assignment for the friendly fighters on the hostile fighters is the most crucial task for cooperative multiple target attack(CMTA).In this paper,a heuristic quantum genetic algorithm(HQGA)is proposed to solve the DM problem.The originality of our work can be supported in the following aspects:(1)the HQGA assigns all hostile fighters to every missile rather than fighters so that the HQGA can encode chromosomes with quantum bits(Q-bits);(2)the relative successful sequence probability(RSSP)is defined,based on which the priority attack vector is constructed;(3)the HQGA can heuristically modify quantum chromosomes according to modification technique proposed in this paper;(4)last but not the least,in some special conditions,the HQGA gets rid of the constraint described by other algorithms that to obtain a better result.In the end of this paper,two examples are illustrated to show that the HQGA has its own advantage over other algorithms when dealing with the DM problem in the context of CMTA. 展开更多
关键词 Air combat decision making cooperative multiple target attack heuristic modification quantum genetic algorithm
原文传递
One-to-Any Command and Control Model:Precisely Coordinated Operation on Uncooperative Controlled Nodes 被引量:1
6
作者 QIU Han LI Yufeng +1 位作者 LI Heshuai ZHU Junhu 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第6期490-498,共9页
New precisely cooperative attacks, such as the coordi- nated cross plane session termination (CXPST) attack, need thou- sands upon thousands machines to attack diverse selected links simultaneously with the given ra... New precisely cooperative attacks, such as the coordi- nated cross plane session termination (CXPST) attack, need thou- sands upon thousands machines to attack diverse selected links simultaneously with the given rate. However, almost all command and control(C&C) mechanisms only provide publishing one com- mand to the whole once, so-called one-to-all C&C model, and are not productive to support CXPST-alike attacks. In this paper, we present one-to-any C&C model on coordination among the unco- operative controlled nodes. As an instance of one-to-any C&C model, directional command publishing (DCP) mechanism lever- aging on Kademlia is provided with a range-mapping key creating algorithm for commands to compute the publishing range and a statistically stochastic node querying scheme to obtain the com- mands immediately. With theoretical analysis and simulation, it is indicated that one-to-any C&C model fits for precisely coordi- nated operation on uncooperative controlled nodes with least complexity, better accuracy and efficiency. Furthermore, DCP mechanism can support one-to-all command publishing at the same time. As an example of future C&C model, studying on one-to-any C&C model may help to promote the development of more efficient countermeasures. 展开更多
关键词 one-to-any command and control(C&C) model directional command publishing(DCP) mechanism precisely cooperative attack uncooperative controlled node
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部