BACKGROUND Total knee arthroplasty(TKA)using implants with a high level of constraint has generally been recommended for patients with osteoarthritis(OA)who have valgus alignment.However,studies have reported favorabl...BACKGROUND Total knee arthroplasty(TKA)using implants with a high level of constraint has generally been recommended for patients with osteoarthritis(OA)who have valgus alignment.However,studies have reported favorable outcomes even with cruciate-retaining(CR)implants.AIM To evaluate the coronal plane stability of CR-TKA in patients with valgus OA at the mid-term follow-up.METHODS Patients with primary valgus OA of the knee who underwent TKA from January 2014 to January 2021 were evaluated through stress radiography using a digital stress device with 100 N of force on both the medial and lateral side.Gap openings and degrees of angulation change were determined.Descriptive statistical analysis was performed for both continuous and categorical variables.Inter-rater reliability of the radiographic measurements was evaluated using Cronbach’s alpha.RESULTS This study included 25 patients(28 knees)with a mean preoperative mechanical valgus axis of 11.3(3.6-27.3)degrees.The mean follow-up duration was 3.4(1.04-7.4)years.Stress radiographs showed a median varus and valgus gap opening of 1.6(IQR 0.6-3.0)mm and 1.7(IQR 1.3-2.3)mm and varus and valgus angulation changes of 2.5(IQR 1.3-4.8)degrees and 2.3(IQR 2.0-3.6)degrees,respectively.No clinical signs of instability,implant loosening,or revision due to instability were observed throughout this case series.CONCLUSION The present study demonstrated that using CR-TKA for patients with valgus OA of the knee promoted excellent coronal plane stability.展开更多
Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynt...Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynthesis method has not been elucidated yet. This study investigated the displacement direction of the femoral head fragment and its effect on the bone using finite element method. A finite element model for CSFF was developed from CT image data of a patient with osteoporosis using Mechanical Finder (ver. 11). Subsequently, finite element analyses were performed on six osteosynthesis models under maximum load applied during walking. The compressive stresses, tensile stresses, and compressive strains of each model were examined. The results suggested that the compressive and tensile stress distributions were concentrated on the anterior side of the femoral neck. Compressive strain distribution in the femoral head and neck was concentrated in four areas: at the tip of the blade or lag screw, the anteroinferior side of the blade or lag screw near the fracture site, and the upper right and lower left near the junction of the blade or lag screw and nail. Thus, the distribution of both these stresses revealed that the femoral head fragment was prone to anterior and inferior displacement. Distribution of compressive strains revealed the direction of the stress exerted by the osteosynthetic implant on the bone. The same results were observed in all osteosynthetic implants;thus, the findings could lay the foundation for developing methods for placing osteosynthetic implants less prone to displacement and the osteosynthetic implants themselves. In particular, the study provides insight into the optimal treatment of CSFF.展开更多
Background: Knife edge, chamfer, and shoulder are the three distinct finishing lines utilized in crown preparations. Each finishing line has relative benefits and drawbacks. However, not much scientific data exists re...Background: Knife edge, chamfer, and shoulder are the three distinct finishing lines utilized in crown preparations. Each finishing line has relative benefits and drawbacks. However, not much scientific data exists regarding which of these finishing lines will leave the most amount of residual dentine coronally on maxillary lateral incisors and mandibular incisors. Objective: To assess the coronal residual dentine thickness after different cervical finishing lines for anterior crown preparations. Materials and Methods: A prospective comparative study was conducted including mandibular incisors and maxillary laterals that were taken from subjects from 18 to 30 years old. Teeth in each of the three groups were randomly separated into three cervical margin preparation groups: knife edge, chamfer and shoulder. The teeth were then prepared for single crown coverage using these finishing lines. The teeth were sectioned halfway through the crown preparation, and a digital caliper was used to determine the residual dentine thickness at the buccal, lingual, mesial and distal areas. The Tukey test was used for mean comparison, and ANOVA analysis was used to evaluate the variation in mean residual dentine thickness. Results: For upper lateral incisors, knife edge finishing lines showed the highest amount of remaining dentine thickness—1.5 mm. lingually, while the upper lateral incisors mesially had the least amount of 0.53 mm for shoulder finishing lines. The least residual dentine (0.53 mm for the shoulder and 0.70 mm for the chamfer finishing line) was found in the interproximal portions of all the teeth that were selected. Lower central incisors had the least amount of residual dentine 0.61 mm for shoulder preparations mesially whiles lower lateral incisors had the least amount of residual dentine for shoulder preparations 0.58 mm distally. There was a statistically significant difference of 0.001 across the groups. Conclusion: The thickness of residual dentine seen coronally after the three finishing line preparations showed a statistically significant difference and the knife edge finishing line provided enough coronal protection within the scope of this study.展开更多
The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which...The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.展开更多
Coronal shear fractures of the distal humerus are rare,complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the ra...Coronal shear fractures of the distal humerus are rare,complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the radial head in a hyper-extended or semi-flexed elbow or from spontaneous reduction of a posterolateral subluxation or dislocation. Due to the small number of soft tissue attachments at this site, almost all of these fractures are displaced. The incidence of distal humeral coronal shear fractures is higher among women because of the higher rate of osteoporosis in women and the difference in carrying angle between men and women. Distal humeral coronal shear fractures may occur in isolation, may be part of a complex elbow injury, or may be associated with injuries proximal or distal to the elbow. An associated lateral collateral ligament injury is seen in up to 40% and an associated radial head fracture is seen in up to 30% of these fractures. Given the complex nature of distal humeral coronal shear fractures, there is preference for operative management. Operative fixation leads to stable anatomic reduction, restores articular congruity, and allows initiation of early range-of-motion movements in the majority of cases. Several surgical exposure and fixation techniques are available to reconstruct the articular surface fol owing distal humeral coronal shear fractures. The lateral extensile approach and fixation with countersunk headless compression screws placed in an anterior-to-posterior fashion are commonly used. We have found a two-incision approach(direct anterior and lateral) that results in less soft tissue dissection and better outcomes than the lateral extensile approach in our experience. Stiffness, pain, articular incongruity, arthritis, and ulnohumeral instability may result if reduction is non-anatomic or if fixation fails.展开更多
Advent in three-dimensional(3D) imaging technology has seen 3D ultrasound establish itself as a useful adjunct complementary to traditional two-dimensional imaging of the female pelvis. This advantage largely arises f...Advent in three-dimensional(3D) imaging technology has seen 3D ultrasound establish itself as a useful adjunct complementary to traditional two-dimensional imaging of the female pelvis. This advantage largely arises from its ability to reconstruct the coronal plane of the uterus, which allows further delineation of many gynecological disorders. 3D imaging of the uterus is now the preferred imaging modality for assessing congenital uterine anomalies and intrauterine device localization. Newer indications include the diagnosis of adenomyosis. It can also add invaluable information to delineate other endometrial and myometrial pathology such as fibroids and endometrial polyps.展开更多
The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determ...The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L-1 EDTA/2 mol·L-1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD〉ID〉MD. Western blotting analysis detected -66 and -72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a -66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD〉ID〉OD. The eoneentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions.展开更多
As for the present situation of coronal mass ejection (CME) triggering models, the distributions of Alfv@n waves in flux ropes are different from model to model, and thus examining those distributions in interplanet...As for the present situation of coronal mass ejection (CME) triggering models, the distributions of Alfv@n waves in flux ropes are different from model to model, and thus examining those distributions in interplanetary coronal mass ejection (ICME) is an effective way to connect ICME observations with these theoretical models of CME triggering. However, previous observations of Alfv@nic fluctuations in ICMEs were rare with locations ranging from 0.3 AU to 0.68 AU only, which is usually explained as rapid dissipation of those remnant waves. Here we present an observation of Alfv@n waves in a magnetic cloud (MC) near 1 AU, in situ detected by WIND in February 17,-~20, 2011. The MC was generated by a CME accompanied with the first X-class flare in the 24th solar cycle. The slope of the power spectral densities of magnetic fluctuation in the MC, are similar to those modes in ambient solar wind, but more anisotropic. The results will also be helpful for studies of CME theories and ICME thermodynamics.展开更多
Two-dimensional(2 D) solar coronal magnetogram is difficult to be measured directly until now.From the previous knowledge,a general relation has been noticed that the brighter green-line brightness for corona,the high...Two-dimensional(2 D) solar coronal magnetogram is difficult to be measured directly until now.From the previous knowledge,a general relation has been noticed that the brighter green-line brightness for corona,the higher coronal magnetic field intensity may correspond to.To try to further reveal the relationship between coronal green line brightness and magnetic field intensity,we use the 2 D coronal images observed by Yunnan Observatories Greenline Imaging System(YOGIS) of the 10 cm Lijiang coronagraph and the coronal magnetic field maps calculated from the current-free extrapolations with the photospheric magnetograms taken by Helioseismic and Magnetic Imager(HMI) on board the Solar Dynamics Observatory(SDO) spacecraft.In our analysis,we identified the coronal loop structures and construct two-dimensional maps of the corresponding magnetic field intensity in the plane of the sky(POS) above the limb.We derive the correlation coefficients between the coronal brightness and the magnetic field intensity for different heights of coronal layers.We further use a linear combination of a Gaussian and a quadratic profile to fit the correlation coefficients distribution,finding a largest correlation coefficient of 0.82 near 1.1 R(solar radii) where is almost the top of the closed loop system.For the small closed loop system identified,the correlation coefficient distributions crossing and covering the loop are calculated.We also investigate the correlation with extended heliocentric latitude zones and long period of one whole Carrington Rotation,finding again that the maximum correlation coefficient occurs at the same height.It is the first time for us to find that the correlation coefficients are high(all are larger than 0.8) at the loop-tops and showing poor correlation coefficients with some fluctuations near the feet of the coronal loops.Our findings indicate that,for the heating of the low-latitude closed loops,both DC(dissipation of currents) and AC(dissipation of Alfvén and magnetosonic waves) mechanisms should act simultaneously on the whole closed loop system while the DC mechanisms dominate in the loop-top regions.Therefore,in the distributions of the correlation coefficients with different heights of coronal layers,for both large-and small-scale latitude ranges,the coefficients can reach their maximum values at the same coronal height of 1.1 R,which may indicate the particular importance of the height of closed loops for studying the coupling of the local emission mechanism and the coronal magnetic fields,which maybe helpful for studying the origin of the low-speed solar wind.展开更多
We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament...We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.展开更多
Using Nancay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metri...Using Nancay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events arc selected: the events of 2000 July 14, 2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.展开更多
With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity a...With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity amplitudes (so-called "perturbation profiles"). We use a semi-automatic method to investigate the pertur- bation profiles of coronal waves. The location and amplitude of the coronal waves are calculated over a 30~ sector on the sphere, where the wave signal is strongest. The position with the strongest perturbation at each time is considered as the location of the wave front. In all four events, the wave velocities vary with time for most of their lifetime, up to 15 rain, while in the event observed by the Atmospheric Imaging Assembly there is at, additional early phase with a much higher velocity. The velocity varies greatly between different waves from 216 to 440 km s-1. The velocity of the two waves initially increases, subsequently decreases, and then increases again. Two other waves show a deceleration followed by an acceleration. Three categories of am- plitude evolution of global coronal waves are found for the four events. The first is that the amplitude only shows a decrease. The second is that the amplitude initially increases and then decreases, and the third is that the amplitude shows an orderly in- crease, a decrease, an increase again and then a decrease. All the extreme ultraviolet waves show a decrease in amplitude while propagating farther away, probably because the driver of the global coronal wave (coronal mass ejection) is moving farther away from the solar surface.展开更多
Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs t...Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loopshaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523km s -1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light inten-sity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of "detectable" halo CMEs is ~922km s -1, very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.展开更多
Kinematic properties of coronal mass ejections (CMEs) suffer from projection effects,and it is expected that the real velocity should be larger and the real angular width should be smaller than the apparent values.S...Kinematic properties of coronal mass ejections (CMEs) suffer from projection effects,and it is expected that the real velocity should be larger and the real angular width should be smaller than the apparent values.Several attempts have been taken to correct the projection effects,which however led to an inflated average velocity probably due to the biased choice of CME events.In order to estimate the overall influence of the projection effects on the kinematic properties of the CMEs,we perform a forward modeling of real distributions of CME properties,such as the velocity,the angular width,and the latitude,by requiring their projected distributions to best match observations.Such a matching is conducted by Monte Carlo simulations.According to the derived real distributions,we found that (1) the average real velocity of all non-full-halo CMEs is about 514 km s-1,and the average real angular width is about 33°,in contrast to the corresponding apparent values of 418 km s-1 and 42.7° in observations;(2) For the CMEs with the angular width in the range of 20°-120°,the average real velocity is 510 km s-1 and the average real angular width is 43.4°,in contrast to the corresponding apparent values of 392 km s-1 and 52° in observations.展开更多
Inspired by the finding that the large waiting time of solar flares presents a power-law distribution, we investigate the waiting time distribution (WTD) of coronal mass ejections (CMEs). SOHO/LASCO CME observations f...Inspired by the finding that the large waiting time of solar flares presents a power-law distribution, we investigate the waiting time distribution (WTD) of coronal mass ejections (CMEs). SOHO/LASCO CME observations from 1996 to 2003 are used in this study. It is shown that the observed CMEs have a similar power-law behavior to the flares, with an almost identical power-law index. This strongly supports the viewpoint that solar flares and CMEs are different manifestations of the same physical process. We have also investigated separately the WTDs of fast-type and slow-type CMEs and found that their indices are identical, which imply that both types of CME may originate from the same physical mechanism.展开更多
An ensemble prediction model of solar proton events (SPEs), combining the information of solar flares and coronal mass ejections (CMEs), is built. In this model, solar flares are parameterized by the peak flux, th...An ensemble prediction model of solar proton events (SPEs), combining the information of solar flares and coronal mass ejections (CMEs), is built. In this model, solar flares are parameterized by the peak flux, the duration and the longitude. In addition, CMEs are parameterized by the width, the speed and the measurement position angle. The importance of each parameter for the occurrence of SPEs is estimated by the information gain ratio. We find that the CME width and speed are more informative than the flare’s peak flux and duration. As the physical mechanism of SPEs is not very clear, a hidden naive Bayes approach, which is a probability-based calculation method from the field of machine learning, is used to build the prediction model from the observational data. As is known, SPEs originate from solar flares and/or shock waves associated with CMEs. Hence, we first build two base prediction models using the properties of solar flares and CMEs, respectively. Then the outputs of these models are combined to generate the ensemble prediction model of SPEs. The ensemble prediction model incorporating the complementary information of solar flares and CMEs achieves better performance than each base prediction model taken separately.展开更多
Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). ...Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.展开更多
We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Mi...We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The eruption involved in the disappearance of an Ha filament can be clearly identified in EIT 195A difference images. Two flare-like EUV ribbons and two obvious coronal dimming regions were formed. The two dimming regions had a similar appearance in lines formed in temperature range 6×10^4 K to several 10^6 K. They were located in regions of opposite magnetic polarities near the two ends of the eruptive filament. No significant X-ray or Hα flare was recorded associated with the eruption and no obvious photospheric magnetic activity was detected around the eruptive region, and particularly below the coronal dimming regions. The above surface activities were closely associated with a partial halo-type coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on the SOHO. In terms of the magnetic flux rope model of CMEs, we explained these multiple observations as an integral process of largescale rearrangement of coronal magnetic field initiated by the filament eruption, in which the dimming regions marked the evacuated feet of the flux rope.展开更多
Features of flares that occur in association with coronal mass ejections (CMEs) have often displayed variations compared to flares with no associated CMEs. A comparative estimation of peak flux values of flares asso...Features of flares that occur in association with coronal mass ejections (CMEs) have often displayed variations compared to flares with no associated CMEs. A comparative estimation of peak flux values of flares associated with CMEs and those without CMEs is made. Peak flux values of flares associated with CMEs show distinctly higher values in comparison to flares with no associated CMEs. Higher peak flux of CME associated flares may be attributed to the heating of plasma to higher tempera- ture when associated with CMEs. While providing a distinct difference between the flux values of flares clearly associated with CMEs compared to flares associated with no CMEs, this study also highlights an evident difficulty in making distinct flare-CME associations.展开更多
Flare characteristics such as the flare occurrence number density and the distribution of peak flux as well as duration of flares occurring on either side of a coronal mass ejection(CME) onset time are studied. Whil...Flare characteristics such as the flare occurrence number density and the distribution of peak flux as well as duration of flares occurring on either side of a coronal mass ejection(CME) onset time are studied. While the flares are rather evenly distributed statistically on either side of the CME onset time,the flare peak flux and duration tend to decrease depending upon their occurrence either before or after the CME onset. This is consistent with the earlier findings that flares emit higher energy before a CME whereas the energy is less in flares occurring after a CME.展开更多
文摘BACKGROUND Total knee arthroplasty(TKA)using implants with a high level of constraint has generally been recommended for patients with osteoarthritis(OA)who have valgus alignment.However,studies have reported favorable outcomes even with cruciate-retaining(CR)implants.AIM To evaluate the coronal plane stability of CR-TKA in patients with valgus OA at the mid-term follow-up.METHODS Patients with primary valgus OA of the knee who underwent TKA from January 2014 to January 2021 were evaluated through stress radiography using a digital stress device with 100 N of force on both the medial and lateral side.Gap openings and degrees of angulation change were determined.Descriptive statistical analysis was performed for both continuous and categorical variables.Inter-rater reliability of the radiographic measurements was evaluated using Cronbach’s alpha.RESULTS This study included 25 patients(28 knees)with a mean preoperative mechanical valgus axis of 11.3(3.6-27.3)degrees.The mean follow-up duration was 3.4(1.04-7.4)years.Stress radiographs showed a median varus and valgus gap opening of 1.6(IQR 0.6-3.0)mm and 1.7(IQR 1.3-2.3)mm and varus and valgus angulation changes of 2.5(IQR 1.3-4.8)degrees and 2.3(IQR 2.0-3.6)degrees,respectively.No clinical signs of instability,implant loosening,or revision due to instability were observed throughout this case series.CONCLUSION The present study demonstrated that using CR-TKA for patients with valgus OA of the knee promoted excellent coronal plane stability.
文摘Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynthesis method has not been elucidated yet. This study investigated the displacement direction of the femoral head fragment and its effect on the bone using finite element method. A finite element model for CSFF was developed from CT image data of a patient with osteoporosis using Mechanical Finder (ver. 11). Subsequently, finite element analyses were performed on six osteosynthesis models under maximum load applied during walking. The compressive stresses, tensile stresses, and compressive strains of each model were examined. The results suggested that the compressive and tensile stress distributions were concentrated on the anterior side of the femoral neck. Compressive strain distribution in the femoral head and neck was concentrated in four areas: at the tip of the blade or lag screw, the anteroinferior side of the blade or lag screw near the fracture site, and the upper right and lower left near the junction of the blade or lag screw and nail. Thus, the distribution of both these stresses revealed that the femoral head fragment was prone to anterior and inferior displacement. Distribution of compressive strains revealed the direction of the stress exerted by the osteosynthetic implant on the bone. The same results were observed in all osteosynthetic implants;thus, the findings could lay the foundation for developing methods for placing osteosynthetic implants less prone to displacement and the osteosynthetic implants themselves. In particular, the study provides insight into the optimal treatment of CSFF.
文摘Background: Knife edge, chamfer, and shoulder are the three distinct finishing lines utilized in crown preparations. Each finishing line has relative benefits and drawbacks. However, not much scientific data exists regarding which of these finishing lines will leave the most amount of residual dentine coronally on maxillary lateral incisors and mandibular incisors. Objective: To assess the coronal residual dentine thickness after different cervical finishing lines for anterior crown preparations. Materials and Methods: A prospective comparative study was conducted including mandibular incisors and maxillary laterals that were taken from subjects from 18 to 30 years old. Teeth in each of the three groups were randomly separated into three cervical margin preparation groups: knife edge, chamfer and shoulder. The teeth were then prepared for single crown coverage using these finishing lines. The teeth were sectioned halfway through the crown preparation, and a digital caliper was used to determine the residual dentine thickness at the buccal, lingual, mesial and distal areas. The Tukey test was used for mean comparison, and ANOVA analysis was used to evaluate the variation in mean residual dentine thickness. Results: For upper lateral incisors, knife edge finishing lines showed the highest amount of remaining dentine thickness—1.5 mm. lingually, while the upper lateral incisors mesially had the least amount of 0.53 mm for shoulder finishing lines. The least residual dentine (0.53 mm for the shoulder and 0.70 mm for the chamfer finishing line) was found in the interproximal portions of all the teeth that were selected. Lower central incisors had the least amount of residual dentine 0.61 mm for shoulder preparations mesially whiles lower lateral incisors had the least amount of residual dentine for shoulder preparations 0.58 mm distally. There was a statistically significant difference of 0.001 across the groups. Conclusion: The thickness of residual dentine seen coronally after the three finishing line preparations showed a statistically significant difference and the knife edge finishing line provided enough coronal protection within the scope of this study.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.40904046,40874075 and 40525014)the 973 National Basic Research Program(2006CB806304)+2 种基金the Ministry of Education of China(200530)the Program for New Century Excellent Talents in University(NCET-08-0524)the Chinese Academy of Sciences(KZCX2-YW-QN511, KJCX2-YW-N28 and the startup fund)
文摘The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.
文摘Coronal shear fractures of the distal humerus are rare,complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the radial head in a hyper-extended or semi-flexed elbow or from spontaneous reduction of a posterolateral subluxation or dislocation. Due to the small number of soft tissue attachments at this site, almost all of these fractures are displaced. The incidence of distal humeral coronal shear fractures is higher among women because of the higher rate of osteoporosis in women and the difference in carrying angle between men and women. Distal humeral coronal shear fractures may occur in isolation, may be part of a complex elbow injury, or may be associated with injuries proximal or distal to the elbow. An associated lateral collateral ligament injury is seen in up to 40% and an associated radial head fracture is seen in up to 30% of these fractures. Given the complex nature of distal humeral coronal shear fractures, there is preference for operative management. Operative fixation leads to stable anatomic reduction, restores articular congruity, and allows initiation of early range-of-motion movements in the majority of cases. Several surgical exposure and fixation techniques are available to reconstruct the articular surface fol owing distal humeral coronal shear fractures. The lateral extensile approach and fixation with countersunk headless compression screws placed in an anterior-to-posterior fashion are commonly used. We have found a two-incision approach(direct anterior and lateral) that results in less soft tissue dissection and better outcomes than the lateral extensile approach in our experience. Stiffness, pain, articular incongruity, arthritis, and ulnohumeral instability may result if reduction is non-anatomic or if fixation fails.
文摘Advent in three-dimensional(3D) imaging technology has seen 3D ultrasound establish itself as a useful adjunct complementary to traditional two-dimensional imaging of the female pelvis. This advantage largely arises from its ability to reconstruct the coronal plane of the uterus, which allows further delineation of many gynecological disorders. 3D imaging of the uterus is now the preferred imaging modality for assessing congenital uterine anomalies and intrauterine device localization. Newer indications include the diagnosis of adenomyosis. It can also add invaluable information to delineate other endometrial and myometrial pathology such as fibroids and endometrial polyps.
文摘The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L-1 EDTA/2 mol·L-1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD〉ID〉MD. Western blotting analysis detected -66 and -72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a -66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD〉ID〉OD. The eoneentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions.
基金supported by National Natural Science Foundation of China (Nos.40974104,40731056,and 10975012)Doctoral Fund of Ministry of Education of China (20090001110012)National Key Basic Research Science Foundation of China (2011CB811400,2009GB105004)
文摘As for the present situation of coronal mass ejection (CME) triggering models, the distributions of Alfv@n waves in flux ropes are different from model to model, and thus examining those distributions in interplanetary coronal mass ejection (ICME) is an effective way to connect ICME observations with these theoretical models of CME triggering. However, previous observations of Alfv@nic fluctuations in ICMEs were rare with locations ranging from 0.3 AU to 0.68 AU only, which is usually explained as rapid dissipation of those remnant waves. Here we present an observation of Alfv@n waves in a magnetic cloud (MC) near 1 AU, in situ detected by WIND in February 17,-~20, 2011. The MC was generated by a CME accompanied with the first X-class flare in the 24th solar cycle. The slope of the power spectral densities of magnetic fluctuation in the MC, are similar to those modes in ambient solar wind, but more anisotropic. The results will also be helpful for studies of CME theories and ICME thermodynamics.
基金supported by the National Natural Science Foundation of China under grants 11873090, 12173086, 11873092, U2031148the CAS “Light of West China” Program。
文摘Two-dimensional(2 D) solar coronal magnetogram is difficult to be measured directly until now.From the previous knowledge,a general relation has been noticed that the brighter green-line brightness for corona,the higher coronal magnetic field intensity may correspond to.To try to further reveal the relationship between coronal green line brightness and magnetic field intensity,we use the 2 D coronal images observed by Yunnan Observatories Greenline Imaging System(YOGIS) of the 10 cm Lijiang coronagraph and the coronal magnetic field maps calculated from the current-free extrapolations with the photospheric magnetograms taken by Helioseismic and Magnetic Imager(HMI) on board the Solar Dynamics Observatory(SDO) spacecraft.In our analysis,we identified the coronal loop structures and construct two-dimensional maps of the corresponding magnetic field intensity in the plane of the sky(POS) above the limb.We derive the correlation coefficients between the coronal brightness and the magnetic field intensity for different heights of coronal layers.We further use a linear combination of a Gaussian and a quadratic profile to fit the correlation coefficients distribution,finding a largest correlation coefficient of 0.82 near 1.1 R(solar radii) where is almost the top of the closed loop system.For the small closed loop system identified,the correlation coefficient distributions crossing and covering the loop are calculated.We also investigate the correlation with extended heliocentric latitude zones and long period of one whole Carrington Rotation,finding again that the maximum correlation coefficient occurs at the same height.It is the first time for us to find that the correlation coefficients are high(all are larger than 0.8) at the loop-tops and showing poor correlation coefficients with some fluctuations near the feet of the coronal loops.Our findings indicate that,for the heating of the low-latitude closed loops,both DC(dissipation of currents) and AC(dissipation of Alfvén and magnetosonic waves) mechanisms should act simultaneously on the whole closed loop system while the DC mechanisms dominate in the loop-top regions.Therefore,in the distributions of the correlation coefficients with different heights of coronal layers,for both large-and small-scale latitude ranges,the coefficients can reach their maximum values at the same coronal height of 1.1 R,which may indicate the particular importance of the height of closed loops for studying the coupling of the local emission mechanism and the coronal magnetic fields,which maybe helpful for studying the origin of the low-speed solar wind.
基金Supported by the National Natural Science Foundation of China.
文摘We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.
基金Supported by the National Natural Science Foundation of China.
文摘Using Nancay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events arc selected: the events of 2000 July 14, 2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40890161,11025315,10921303 and 11003026)the CAS Project KJCX2-YW-T04+1 种基金the National Basic Research Programof China (Grant 2011CB811403)the Young Researcher Grant of the National Astronomical Observatories,Chinese Academy of Sciences
文摘With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity amplitudes (so-called "perturbation profiles"). We use a semi-automatic method to investigate the pertur- bation profiles of coronal waves. The location and amplitude of the coronal waves are calculated over a 30~ sector on the sphere, where the wave signal is strongest. The position with the strongest perturbation at each time is considered as the location of the wave front. In all four events, the wave velocities vary with time for most of their lifetime, up to 15 rain, while in the event observed by the Atmospheric Imaging Assembly there is at, additional early phase with a much higher velocity. The velocity varies greatly between different waves from 216 to 440 km s-1. The velocity of the two waves initially increases, subsequently decreases, and then increases again. Two other waves show a deceleration followed by an acceleration. Three categories of am- plitude evolution of global coronal waves are found for the four events. The first is that the amplitude only shows a decrease. The second is that the amplitude initially increases and then decreases, and the third is that the amplitude shows an orderly in- crease, a decrease, an increase again and then a decrease. All the extreme ultraviolet waves show a decrease in amplitude while propagating farther away, probably because the driver of the global coronal wave (coronal mass ejection) is moving farther away from the solar surface.
基金Supported by the National Natural Science Foundation of Chinasupported by the Chinese foundations (GYHY200706013, 2006CB806302)+1 种基金the National Natural Science Foundation of China (Grant Nos. 10403003, 10933003 and 10673004)SOHO is a project of international cooperation between ESA and NASA
文摘Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loopshaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523km s -1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light inten-sity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of "detectable" halo CMEs is ~922km s -1, very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.
基金supported by the National Basic Research Program of China(No.2011CB811402)the National Natural Science Foundation of China (Grant Nos.11025314,10403003,10933003 and 10673004)
文摘Kinematic properties of coronal mass ejections (CMEs) suffer from projection effects,and it is expected that the real velocity should be larger and the real angular width should be smaller than the apparent values.Several attempts have been taken to correct the projection effects,which however led to an inflated average velocity probably due to the biased choice of CME events.In order to estimate the overall influence of the projection effects on the kinematic properties of the CMEs,we perform a forward modeling of real distributions of CME properties,such as the velocity,the angular width,and the latitude,by requiring their projected distributions to best match observations.Such a matching is conducted by Monte Carlo simulations.According to the derived real distributions,we found that (1) the average real velocity of all non-full-halo CMEs is about 514 km s-1,and the average real angular width is about 33°,in contrast to the corresponding apparent values of 418 km s-1 and 42.7° in observations;(2) For the CMEs with the angular width in the range of 20°-120°,the average real velocity is 510 km s-1 and the average real angular width is 43.4°,in contrast to the corresponding apparent values of 392 km s-1 and 52° in observations.
文摘Inspired by the finding that the large waiting time of solar flares presents a power-law distribution, we investigate the waiting time distribution (WTD) of coronal mass ejections (CMEs). SOHO/LASCO CME observations from 1996 to 2003 are used in this study. It is shown that the observed CMEs have a similar power-law behavior to the flares, with an almost identical power-law index. This strongly supports the viewpoint that solar flares and CMEs are different manifestations of the same physical process. We have also investigated separately the WTDs of fast-type and slow-type CMEs and found that their indices are identical, which imply that both types of CME may originate from the same physical mechanism.
基金supported by the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences, the National Basic Research Program of China (973 Program, Grant No. 2011CB811406)the National Natural Science Foundation of China (Grant Nos. 10733020, 10921303, 11003026 and 11078010)
文摘An ensemble prediction model of solar proton events (SPEs), combining the information of solar flares and coronal mass ejections (CMEs), is built. In this model, solar flares are parameterized by the peak flux, the duration and the longitude. In addition, CMEs are parameterized by the width, the speed and the measurement position angle. The importance of each parameter for the occurrence of SPEs is estimated by the information gain ratio. We find that the CME width and speed are more informative than the flare’s peak flux and duration. As the physical mechanism of SPEs is not very clear, a hidden naive Bayes approach, which is a probability-based calculation method from the field of machine learning, is used to build the prediction model from the observational data. As is known, SPEs originate from solar flares and/or shock waves associated with CMEs. Hence, we first build two base prediction models using the properties of solar flares and CMEs, respectively. Then the outputs of these models are combined to generate the ensemble prediction model of SPEs. The ensemble prediction model incorporating the complementary information of solar flares and CMEs achieves better performance than each base prediction model taken separately.
文摘Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.
基金Supported by the National Natural Science Foundation of China.
文摘We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The eruption involved in the disappearance of an Ha filament can be clearly identified in EIT 195A difference images. Two flare-like EUV ribbons and two obvious coronal dimming regions were formed. The two dimming regions had a similar appearance in lines formed in temperature range 6×10^4 K to several 10^6 K. They were located in regions of opposite magnetic polarities near the two ends of the eruptive filament. No significant X-ray or Hα flare was recorded associated with the eruption and no obvious photospheric magnetic activity was detected around the eruptive region, and particularly below the coronal dimming regions. The above surface activities were closely associated with a partial halo-type coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on the SOHO. In terms of the magnetic flux rope model of CMEs, we explained these multiple observations as an integral process of largescale rearrangement of coronal magnetic field initiated by the filament eruption, in which the dimming regions marked the evacuated feet of the flux rope.
文摘Features of flares that occur in association with coronal mass ejections (CMEs) have often displayed variations compared to flares with no associated CMEs. A comparative estimation of peak flux values of flares associated with CMEs and those without CMEs is made. Peak flux values of flares associated with CMEs show distinctly higher values in comparison to flares with no associated CMEs. Higher peak flux of CME associated flares may be attributed to the heating of plasma to higher tempera- ture when associated with CMEs. While providing a distinct difference between the flux values of flares clearly associated with CMEs compared to flares associated with no CMEs, this study also highlights an evident difficulty in making distinct flare-CME associations.
文摘Flare characteristics such as the flare occurrence number density and the distribution of peak flux as well as duration of flares occurring on either side of a coronal mass ejection(CME) onset time are studied. While the flares are rather evenly distributed statistically on either side of the CME onset time,the flare peak flux and duration tend to decrease depending upon their occurrence either before or after the CME onset. This is consistent with the earlier findings that flares emit higher energy before a CME whereas the energy is less in flares occurring after a CME.