In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation o...In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.展开更多
The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic...The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.展开更多
Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress ...Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress coupling were studied, and variations of seepage rate with time in complete creep processes of rock were analyzed. It is shown that, when the applied stress is less than failure stress level, the creep deformation is not obvious, and its main form is steady-state creep. When applied stress level is greater than or less than but close to fracture stress, it is easier to see the increase of creep deformation and the more obvious accelerative creep characteristics. The circumferential creep deformation is obviously higher than the axial creep deformation. At the stage of steady-state creep, the average of seepage flow rate is about 4.7×10-9 rn/s at confining pressure (tr3) of 2 MPa, and is about 3.9×10-9 m/s at a3 of 6 MPa. It is seen that the seepage flow rate at or3 of 2 MPa in this case is obviously larger than that at tr3 of 6 MPa. At the stage of creep acceleration, the seepage flow rate is markedly increased with the increase of time. The variation of rock permeability is directly connected to the growth and evolution of creep crack. It is suggested that the permeability coefficient in complete creep processes of rock is not a constant, but is a function of rock creep strain, confining pressure, damage variable and pore water pressure. The results can be considered to provide a reliable reference for the establishment of rock rheological model and parameter identification.展开更多
Based on the detailed computer simulation of the indentation testing on the thin-film systems, the present paper explores the detailed procedure of determining elastic properties (elastic modulusE^(f) and Poisson rati...Based on the detailed computer simulation of the indentation testing on the thin-film systems, the present paper explores the detailed procedure of determining elastic properties (elastic modulusE^(f) and Poisson ratio v(f)) and creep parameters (CCREEP^(f) and nCREEP^(f)) for a simple Norton law (ε=CCREEP^(f)σ^n CREE^(f), where e is creep strain rate, and a is the stress) material for a thin film coated on a creep substrate, whose elastic properties(E^(s) and v^(s)) and creep properties (CCREEP^(s) and nCREEP^(s)) of the substrate are known, from indentation elastic and creep testing,respectively. The influences of the thickness of the thin-film and the size of the indenter on the indentation behavior have been discussed. It is shown that the boundary between the thin film and the substrate has great influence on the indentation creep behavior. The relative sizes of indentation systems are chosen so that the behavior of the indentation on the film is influenced by the substrate. The two elastic parameters E^(f) and v^(f) of the film are coupled on the influence of the elastic behavior of indentation. With the two different size indenters, the two elastic parameters E^(f) and v^(f) of the film can be uniquely determined by the indentation experimental slopes of depth to applied net section stress results. The procedure of determining of the two Norton law parameters CCREEP^(f) and nCREEP^(f) includes the following steps by the steady indentation rate d. The first step to calculate the creep indentation rate on certain loads of the two different sizes of indenters on a set of assumed values of CCREEP^(f) and nCREEP^(f)Then to build relationship between the creep indentation rate and the assumed CCREEP^(f) and nCREEP^(f) With the experimental creep indentation rate to intersect two sets of which have the same values of d. The last step is to build the CCREEP^(f) and nCREEP^(f)curves from the intersection points for the two indenters. These two curves CCREEP^(f) and nCREEP^(f)展开更多
The effect of thermal exposure on the microstructure and creep properties of the Ni-based single crystal superalloy in different test conditions was studied.Long-term exposure was performed at 1,000 ℃ and 1,100 ℃ fo...The effect of thermal exposure on the microstructure and creep properties of the Ni-based single crystal superalloy in different test conditions was studied.Long-term exposure was performed at 1,000 ℃ and 1,100 ℃ for 500 h prior to the creep tests.The creep lifetime is found to be improved after the long-term exposure at 1,000 ℃ for 500 h as a result of the formation of secondary M_(23)C_(6) in the interdendritic region.The coarsening of γ’ precipitates accompanied by the formation of TCP phase lead to the degradation of alloy,which is responsible for the reduction of the creep lifetime of Ni-base single crystal superalloy after long-term exposure at 1,100 ℃ for 500 h.The creep lifetime of 1,000 oC thermally exposed sample under the conditions of 1,093 ℃/137 MPa is lower than that of heat-treated state.Thermal exposure at 1,100 ℃ for 500 h causes the creep lifetime to drop drastically.展开更多
The effect of Ca addition on the as-cast micmstructure and creep properties of Mg-5Zn-5Sn magnesium alloy was investigated. The results indicate that adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can effectively refine the a...The effect of Ca addition on the as-cast micmstructure and creep properties of Mg-5Zn-5Sn magnesium alloy was investigated. The results indicate that adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can effectively refine the as-cast microstructure of the alloy, and the CaMgSn phase with high thermal stability is formed in the alloy. In addition, adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can also improve the creep properties of the alloy. After adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy, the second creep rate of the alloy at 150℃ and 50 MPa for 100 h decreases from 4.67 ×10^-8 to 1.43 × 10^-8 s^-1. The strengthening mechanism is mainly attributed to the microstructural refinement and the formation of CaMgSn phase.展开更多
The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses ...The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process.展开更多
Evaluation of creep properties of the welded joint through taking local fluctuation of the mechanical properties into consideration is experimentally or analytically seldom carried out. The purposes of the present stu...Evaluation of creep properties of the welded joint through taking local fluctuation of the mechanical properties into consideration is experimentally or analytically seldom carried out. The purposes of the present study are to examine the surface strain distribution in the weld metal of a full thickness welded joint specimen and subsequently to investigate the local variation in the properties of the all-weld metal part of the joint using miniature specimens. A welded joint was prepared for 316FR steel plates by gas tungsten arc welding process using Mod. 316L filler wire. Creep tests were conducted at 823K in air using full thickness large welded joint specimens, HAZ and all-weld metal miniature specimens. From the results obtained, it is concluded that the creep properties of multi-layer welded joints strongly depend on the location of specimen sampling.展开更多
To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic s...To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM)under the high stressstrength ratio.The creep damage was monitored using an electrical resistivity device,ultrasonic testing device,and acoustic emission(AE)instrument.The results showed that the CGBM sample has a creep hardening property.The creep failure strength(CFS)is slightly larger than the uniaxial compressive strength(UCS),ranging in ratio from 108.9%to 116.5%.The instantaneous strain,creep strain,and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests.The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process.The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model.Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process.The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity,ultrasonic pulse velocity(UPV),and AE signals.展开更多
High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of t...High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of the uranium dioxide grain size at the same temperature and the same load. At the same temperature, the logarithmic value of the steady creep rate vs stress has linear relation, and with increasing load, the steady creep rate of the sintered uranium dioxide pellet increases. Under the same load, the steady creep rate of the sintered uranium dioxide pellet increases with increasing temperature; and the creep rates of sintered uranium dioxide pellet with the grain size of 9.0 μm and 23.8 μm under 10 MPa are almost the same. The creep process is controlled both by Nabarro--Herring creep and Hamper-Dorn creep for uranium dioxide pellet with grain size of 9.0 μm, while Hamper---Dora creep is the dominantmechanism for uranium dioxide with grain size of 23.8 μm.展开更多
Vertical section method has been used to measure the fractal dimension of cyclic creep frac- ture surfaces of rotor steel 34CrMoA at 550℃.The relationship between fractal dimension and cyclic creep properties has bee...Vertical section method has been used to measure the fractal dimension of cyclic creep frac- ture surfaces of rotor steel 34CrMoA at 550℃.The relationship between fractal dimension and cyclic creep properties has been analyzed.The fractal dimension is dependent upon the power product of minimum creep rate and rupture time,and satisfies the linear function with rupture strain.展开更多
The precipitation kinetics ofγ'-Ni_(3)(Al,Ta)phase and creep properties of Ni-15Al-x Ta at.%superalloys are investigated by the crystal plasticity phase-field simulation.The results show that the high Ta content ...The precipitation kinetics ofγ'-Ni_(3)(Al,Ta)phase and creep properties of Ni-15Al-x Ta at.%superalloys are investigated by the crystal plasticity phase-field simulation.The results show that the high Ta content brings a lower creep strain for the deceleration and steady creep stage,while the creep lifetime is shorter.The large external strain intensifies the creep damage and shortens the creep life of Ni-15Al-3Ta at.%superalloy.The kinetics evolution and elements distribution are revealed in the quaternary Ni-10Al-8.5Cr-xT a(x=1.5 at.%,2.0 at.%,2.5 at.%)superalloys by the multi-component phase-field simulation.The anti-phase boundary(APB)changes the coarsening mechanism ofγ'phase,and Ta promotes the precipitation ofγ'phase with an increasing volume fraction and particle number.The composition difference betweenγ'andγphases increases with the rising of Ta content,the strong partitioning of Ta toγ'phase strengthens the partitioning of Ni and Cr toγmatrix,and Ta shows a superiority than Al in the lattice site occupation of L1_(2)-Ni_(3)(Al,X)phases.As an importantγ'phase forming element,the optimization of Ta content is essential for improving the mechanical properties of Ni-based superalloys.展开更多
Nonlinear analyses of quad flat package (QFP) on printed circuit board (PCB) assemblies subjected to thermal cycling conditions are presented. Two different solders are considered, namely, Sn37Pb and Sn3.5Ag. The ...Nonlinear analyses of quad flat package (QFP) on printed circuit board (PCB) assemblies subjected to thermal cycling conditions are presented. Two different solders are considered, namely, Sn37Pb and Sn3.5Ag. The stress and strain response of fine pitch devices soldered joints was investigated by using finite element method based on Garofalo-Arrheninus model. The simulated results indicate creep distribution of soldered joints is not uniform, the heel and toe of soldered joints, the area between soldered joints and leads are the creep concentrated sites. The similar phenomena of stress curves simulated based on Garofalo-Arrheninus model and Anand equations is confirmed, and the creep strain value of Sn3.5Ag soldered joints is lower than that of Sn37Pb soldered joints. Thermal cycling results show that Sn3.5Ag strongly outperforms Sn37Pb for QFP devices under the studied test condition. This is well matched with the experimental outcome analyzed. In addition, the soldered devices were tested by micro-joints tester, the tensile strength of Sn3.5Ag soldered joints is found to be higher than that of Sn37Pb soldered joints. By analyzing the fracture microstructure of soldered joints, it is found that fracture mechanism of Sn3.5Ag soldered joints is toughness fracture, while fracture mechanism of Sn37Pb soldered joints includes brittle fracture and toughness fracture. The results of this study provide an important basis of understanding the mechanical properties of fine pitch devices with traditional Sn37Pb and Sn3.5Ag lead-free soldered joints.展开更多
The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NC...The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NCs)with improved mechanical properties are appealing materials for lightweight structural applications.In contrast to conventional Mg-based composites,the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability.The present article reviews Mg-based metal matrix nanocomposites(MMNCs)with metallic and ceramic additions,fabricated via both solid-based(sintering and powder metallurgy)and liquid-based(disintegrated melt deposition)technologies.It also reviews strengthening models and mechanisms that have been proposed to explain the improved mechanical characteristics of Mg-based alloys and nanocomposites.Further,synergistic strengthening mecha-nisms in Mg matrix nanocomposites and the dominant equations for quantitatively predicting mechanical properties are provided.Furthermore,this study offers an overview of the creep and fatigue behavior of Mg-based alloys and nanocomposites using both traditional(uniaxial)and depth-sensing indentation techniques.The potential applications of magnesium-based alloys and nanocomposites are also surveyed.展开更多
The effect of thermal exposure on microstructure and creep properties of a fourth-generation nickelbased single crystal superalloy was investigated.The thermal exposure of samples after the full heat treatment was car...The effect of thermal exposure on microstructure and creep properties of a fourth-generation nickelbased single crystal superalloy was investigated.The thermal exposure of samples after the full heat treatment was carried out at 1000℃,1100℃ and 1140℃ for 100 h and 200 h.The γ’ coarsening,γ’ rafting and γ channel widening were observed in samples after thermal exposure.When the thermal exposure time was constant,the morphology of γ’ phase in the alloy evolved significantly with increasing aging temperature.The interracial dislocation networks in aged samples after creep ruptured gradually became irregular and sparse with the increase of exposure temperature.When the higher exposure temperature was used,enla rgement of the defect pores was observed in samples,the microcracks were more likely to initiate and propagate at the corner of these pores.After aging at 1000℃ for 100 h,the creep life at 1140℃/137 MPa was slightly longer than that of heat-treated sample,which could be attributed to the slightly coarsened γ’ phase,homogenization of refractor elements.In contrast,the creep life of sample exposed at 1140℃ for 100 h was greatly decreased.The decrease of creep life was dominated by the rafting of γ’phase,the irregular interfacial dislocation networks as well as the enlargement of homogenization pores.展开更多
Aero-engine turbine blades may suffer overheating during service,which can result in severe microstructural and mechanical degradation within tens of seconds.In this study,the thermal cycling creep under(950℃/15 min+...Aero-engine turbine blades may suffer overheating during service,which can result in severe microstructural and mechanical degradation within tens of seconds.In this study,the thermal cycling creep under(950℃/15 min+1100℃/1 min)-100 MPa was performed on a directionally solidified superalloy,DZ125.The effects of overheating and thermal cycling on the creep properties were evaluated in terms of creep behavior and microstructural evolution against isothermally crept specimens under 950℃/100 MPa,950℃/270 MPa,and 1100℃/100 MPa.The results indicated that the thermal cycling creep life was reduced dramatically compared to the isothermal creep under 950℃/100 MPa.The plastic creep deformation mainly occurred during the overheating stage during the thermal cycling creep.The thermal cycling creep curve exhibited three stages,similar to the 1100℃isothermal creep,but its minimum creep rate occurred at a lower creep strain.The overheating events caused severe microstructural degradation,such as substantial dissolution ofγ'phase,earlier formation of raftedγ'microstructure,widening of theγchannels,and instability of the interfacial dislocation networks.This microstructural degradation was the main reason for the dramatic decrease in thermal cycling creep life,as the thermal cycling promoted more dislocations to cut intoγ'phase and more cracks to initiate at grain boundaries,carbides,and residual eutectic pools.This study underlines the importance of evaluating the thermal cycling creep properties of superalloys to be used as turbine blades and provides insights into the effect of thermal cycling on directionally solidified superalloys for component design.展开更多
Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al...Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al based alloys. Surface analysis by XPS demonstrates that cerium addition causes the change in the oxide chemistry and provides rapid passivation of the specimen surface. The high temperature strength and creep resistance of Fe 3Al based alloys can be significantly enhanced by alloying additions of tungsten, niobium or molybdenum, especially when combined additions of tungsten with niobium or molybdenum are used. The additions of tungsten, niobium or molybdenum also result in the significant microstructural refinement and the formation of fine precipitates which are identified as M 6C type carbide in the alloys containing tungsten.展开更多
A 9% Cr ferritic steel weld metal containing 1% Co, partially substituted for nickel, was prepared by submerged arc welding (SAW) processing. The microstructure and creep properties of the weld metal were investigated...A 9% Cr ferritic steel weld metal containing 1% Co, partially substituted for nickel, was prepared by submerged arc welding (SAW) processing. The microstructure and creep properties of the weld metal were investigated. The microstructure exhibited a fully tempered martensitic structure free of δ-ferrite. The creep properties of the obtained weld metal were inferior to those of the P92 base metal at 600 and 650 °C. The values of A and n for weld metal in the Norton power law constitution at 650 °C are 1.1×10?21 and 8.1, respectively.展开更多
Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycle...Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycles due to periodic water inundation and drainage may gradually accumulate creep deformation,resulting in rock structure’s damage or even geological hazards such as landslides.To fully investigate the effect of DW cycles on the creep damage properties of sandstone,triaxial creep tests were conducted on saturated sandstone with different DW cycles by using a triaxial rheometer apparatus.The experimental results show that both the instantaneous strain and the stabilized strain increase with the DW cycles.In addition,using the Burgers model,four kinds of functions including an exponentially decreasing function,a linearly decreasing function,a linearly increasing function and an exponentially increasing function were proposed to express the relationships between the shear modulus,viscoelastic parameters of the Burgers model and the deviatoric stress under different DW cycles.Through comparative analysis,it is found that the theoretical curves generated using proposed four kinds of functions are in good agreement with the experimental data.Furthermore,macromorphological and microstructural observations were performed on specimens after various triaxial rheological tests.For samples with small number of DW cycles,approximately X-shaped fracture surfaces were observed in shear failure zones,whereas several shear fractures including obvious axial and horizontal tensile cracks,and flaws were found for samples with relatively large DW cycles due to long-term propagation and evolution of micro-fissures and micro-pores.Furthermore,as the DW cycles increases,the variation in micro-structure of samples after creep failure was summarized into three stages,namely,a stage with good and dense structure,a stage with pore and fissure propagation,and a stage with extensive increase of pores,fissures and loose particles.It is concluded that the combination effect of permeation of water molecules through pores and fissures within sandstone,and the propagation of preexisting pores and fissures owing to the dissolution of mineral particles leads to further deterioration of the mechanical properties of sandstone as the number of DW cycles increases.This study provides a fundamental basis for evaluating the long-term stability of reservoir bank slopes under cyclic fluctuations of water level.展开更多
After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa ar...After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.展开更多
文摘In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.
文摘The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.
基金Projects(11172090,51009052,51109069) supported by the National Natural Science Foundation of ChinaProject(2011CB013504) supported by the National Basic Research Program of China
文摘Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress coupling were studied, and variations of seepage rate with time in complete creep processes of rock were analyzed. It is shown that, when the applied stress is less than failure stress level, the creep deformation is not obvious, and its main form is steady-state creep. When applied stress level is greater than or less than but close to fracture stress, it is easier to see the increase of creep deformation and the more obvious accelerative creep characteristics. The circumferential creep deformation is obviously higher than the axial creep deformation. At the stage of steady-state creep, the average of seepage flow rate is about 4.7×10-9 rn/s at confining pressure (tr3) of 2 MPa, and is about 3.9×10-9 m/s at a3 of 6 MPa. It is seen that the seepage flow rate at or3 of 2 MPa in this case is obviously larger than that at tr3 of 6 MPa. At the stage of creep acceleration, the seepage flow rate is markedly increased with the increase of time. The variation of rock permeability is directly connected to the growth and evolution of creep crack. It is suggested that the permeability coefficient in complete creep processes of rock is not a constant, but is a function of rock creep strain, confining pressure, damage variable and pore water pressure. The results can be considered to provide a reliable reference for the establishment of rock rheological model and parameter identification.
基金the Alexander von Humboldt FOundation. GE would liketo aCknowledge funding from Deutsche Forschungsgemeinschaft (SFB 526: Rheo
文摘Based on the detailed computer simulation of the indentation testing on the thin-film systems, the present paper explores the detailed procedure of determining elastic properties (elastic modulusE^(f) and Poisson ratio v(f)) and creep parameters (CCREEP^(f) and nCREEP^(f)) for a simple Norton law (ε=CCREEP^(f)σ^n CREE^(f), where e is creep strain rate, and a is the stress) material for a thin film coated on a creep substrate, whose elastic properties(E^(s) and v^(s)) and creep properties (CCREEP^(s) and nCREEP^(s)) of the substrate are known, from indentation elastic and creep testing,respectively. The influences of the thickness of the thin-film and the size of the indenter on the indentation behavior have been discussed. It is shown that the boundary between the thin film and the substrate has great influence on the indentation creep behavior. The relative sizes of indentation systems are chosen so that the behavior of the indentation on the film is influenced by the substrate. The two elastic parameters E^(f) and v^(f) of the film are coupled on the influence of the elastic behavior of indentation. With the two different size indenters, the two elastic parameters E^(f) and v^(f) of the film can be uniquely determined by the indentation experimental slopes of depth to applied net section stress results. The procedure of determining of the two Norton law parameters CCREEP^(f) and nCREEP^(f) includes the following steps by the steady indentation rate d. The first step to calculate the creep indentation rate on certain loads of the two different sizes of indenters on a set of assumed values of CCREEP^(f) and nCREEP^(f)Then to build relationship between the creep indentation rate and the assumed CCREEP^(f) and nCREEP^(f) With the experimental creep indentation rate to intersect two sets of which have the same values of d. The last step is to build the CCREEP^(f) and nCREEP^(f)curves from the intersection points for the two indenters. These two curves CCREEP^(f) and nCREEP^(f)
基金funded by the Key Laboratory of Advanced High-temperature Structural Materials for National Defense Science and Technology,China(No:6142903180104)。
文摘The effect of thermal exposure on the microstructure and creep properties of the Ni-based single crystal superalloy in different test conditions was studied.Long-term exposure was performed at 1,000 ℃ and 1,100 ℃ for 500 h prior to the creep tests.The creep lifetime is found to be improved after the long-term exposure at 1,000 ℃ for 500 h as a result of the formation of secondary M_(23)C_(6) in the interdendritic region.The coarsening of γ’ precipitates accompanied by the formation of TCP phase lead to the degradation of alloy,which is responsible for the reduction of the creep lifetime of Ni-base single crystal superalloy after long-term exposure at 1,100 ℃ for 500 h.The creep lifetime of 1,000 oC thermally exposed sample under the conditions of 1,093 ℃/137 MPa is lower than that of heat-treated state.Thermal exposure at 1,100 ℃ for 500 h causes the creep lifetime to drop drastically.
基金supported by the National Natural Science Foundation of China (No.50725413)the National Basic Research Program of China (No.2007CB613704)the Chongqing Education Commission,China (No.KJ090628)
文摘The effect of Ca addition on the as-cast micmstructure and creep properties of Mg-5Zn-5Sn magnesium alloy was investigated. The results indicate that adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can effectively refine the as-cast microstructure of the alloy, and the CaMgSn phase with high thermal stability is formed in the alloy. In addition, adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can also improve the creep properties of the alloy. After adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy, the second creep rate of the alloy at 150℃ and 50 MPa for 100 h decreases from 4.67 ×10^-8 to 1.43 × 10^-8 s^-1. The strengthening mechanism is mainly attributed to the microstructural refinement and the formation of CaMgSn phase.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos: 51704209,51701060,51901153)Natural Science Foundation of Shanxi province (Nos: 201801D121088,201901D211096)the Science and Technology Major Project of Shanxi province (Nos: 20191102007,20191102008)。
文摘The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process.
基金supported by the Budget for Nuclear Research of the Ministry of Education,Culture,Sports,Science and Technology,Japan,based on the screening and counselling by the Atomic Energy Commission.
文摘Evaluation of creep properties of the welded joint through taking local fluctuation of the mechanical properties into consideration is experimentally or analytically seldom carried out. The purposes of the present study are to examine the surface strain distribution in the weld metal of a full thickness welded joint specimen and subsequently to investigate the local variation in the properties of the all-weld metal part of the joint using miniature specimens. A welded joint was prepared for 316FR steel plates by gas tungsten arc welding process using Mod. 316L filler wire. Creep tests were conducted at 823K in air using full thickness large welded joint specimens, HAZ and all-weld metal miniature specimens. From the results obtained, it is concluded that the creep properties of multi-layer welded joints strongly depend on the location of specimen sampling.
基金supported by the National Natural Science Foundation of China(No.51974192)Shanxi Province Postgraduate Education Innovation Project(No.2020SY567)+2 种基金the Applied Basic Research Project of Shanxi Province(No.201801D121092)Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402)Shanxi Science and Technology Major Project(No.20201102004)。
文摘To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM)under the high stressstrength ratio.The creep damage was monitored using an electrical resistivity device,ultrasonic testing device,and acoustic emission(AE)instrument.The results showed that the CGBM sample has a creep hardening property.The creep failure strength(CFS)is slightly larger than the uniaxial compressive strength(UCS),ranging in ratio from 108.9%to 116.5%.The instantaneous strain,creep strain,and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests.The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process.The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model.Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process.The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity,ultrasonic pulse velocity(UPV),and AE signals.
基金Project(50874126)supported by the National Natural Science Foundation of China
文摘High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of the uranium dioxide grain size at the same temperature and the same load. At the same temperature, the logarithmic value of the steady creep rate vs stress has linear relation, and with increasing load, the steady creep rate of the sintered uranium dioxide pellet increases. Under the same load, the steady creep rate of the sintered uranium dioxide pellet increases with increasing temperature; and the creep rates of sintered uranium dioxide pellet with the grain size of 9.0 μm and 23.8 μm under 10 MPa are almost the same. The creep process is controlled both by Nabarro--Herring creep and Hamper-Dorn creep for uranium dioxide pellet with grain size of 9.0 μm, while Hamper---Dora creep is the dominantmechanism for uranium dioxide with grain size of 23.8 μm.
文摘Vertical section method has been used to measure the fractal dimension of cyclic creep frac- ture surfaces of rotor steel 34CrMoA at 550℃.The relationship between fractal dimension and cyclic creep properties has been analyzed.The fractal dimension is dependent upon the power product of minimum creep rate and rupture time,and satisfies the linear function with rupture strain.
基金supported by the National Natural Science Foundation of China(Grant No.52275342)the Fundamental Research Funds for the Central Universities(Grant No.30921013107)。
文摘The precipitation kinetics ofγ'-Ni_(3)(Al,Ta)phase and creep properties of Ni-15Al-x Ta at.%superalloys are investigated by the crystal plasticity phase-field simulation.The results show that the high Ta content brings a lower creep strain for the deceleration and steady creep stage,while the creep lifetime is shorter.The large external strain intensifies the creep damage and shortens the creep life of Ni-15Al-3Ta at.%superalloy.The kinetics evolution and elements distribution are revealed in the quaternary Ni-10Al-8.5Cr-xT a(x=1.5 at.%,2.0 at.%,2.5 at.%)superalloys by the multi-component phase-field simulation.The anti-phase boundary(APB)changes the coarsening mechanism ofγ'phase,and Ta promotes the precipitation ofγ'phase with an increasing volume fraction and particle number.The composition difference betweenγ'andγphases increases with the rising of Ta content,the strong partitioning of Ta toγ'phase strengthens the partitioning of Ni and Cr toγmatrix,and Ta shows a superiority than Al in the lattice site occupation of L1_(2)-Ni_(3)(Al,X)phases.As an importantγ'phase forming element,the optimization of Ta content is essential for improving the mechanical properties of Ni-based superalloys.
基金supported by Six Kind Skilled Personnel Project of Jiangsu Province,China (No.06-E-020)Jiangsu General Colleges and Universities Postgraduate Scientific Research Innovative Plan,China (No.CX07B_087z).
文摘Nonlinear analyses of quad flat package (QFP) on printed circuit board (PCB) assemblies subjected to thermal cycling conditions are presented. Two different solders are considered, namely, Sn37Pb and Sn3.5Ag. The stress and strain response of fine pitch devices soldered joints was investigated by using finite element method based on Garofalo-Arrheninus model. The simulated results indicate creep distribution of soldered joints is not uniform, the heel and toe of soldered joints, the area between soldered joints and leads are the creep concentrated sites. The similar phenomena of stress curves simulated based on Garofalo-Arrheninus model and Anand equations is confirmed, and the creep strain value of Sn3.5Ag soldered joints is lower than that of Sn37Pb soldered joints. Thermal cycling results show that Sn3.5Ag strongly outperforms Sn37Pb for QFP devices under the studied test condition. This is well matched with the experimental outcome analyzed. In addition, the soldered devices were tested by micro-joints tester, the tensile strength of Sn3.5Ag soldered joints is found to be higher than that of Sn37Pb soldered joints. By analyzing the fracture microstructure of soldered joints, it is found that fracture mechanism of Sn3.5Ag soldered joints is toughness fracture, while fracture mechanism of Sn37Pb soldered joints includes brittle fracture and toughness fracture. The results of this study provide an important basis of understanding the mechanical properties of fine pitch devices with traditional Sn37Pb and Sn3.5Ag lead-free soldered joints.
基金H.R.Bakhsheshi-Rad and S.Sharif would like to acknowledge UTM Research Management for the financial support through the funding(Q.J130000.2409.08G37).
文摘The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NCs)with improved mechanical properties are appealing materials for lightweight structural applications.In contrast to conventional Mg-based composites,the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability.The present article reviews Mg-based metal matrix nanocomposites(MMNCs)with metallic and ceramic additions,fabricated via both solid-based(sintering and powder metallurgy)and liquid-based(disintegrated melt deposition)technologies.It also reviews strengthening models and mechanisms that have been proposed to explain the improved mechanical characteristics of Mg-based alloys and nanocomposites.Further,synergistic strengthening mecha-nisms in Mg matrix nanocomposites and the dominant equations for quantitatively predicting mechanical properties are provided.Furthermore,this study offers an overview of the creep and fatigue behavior of Mg-based alloys and nanocomposites using both traditional(uniaxial)and depth-sensing indentation techniques.The potential applications of magnesium-based alloys and nanocomposites are also surveyed.
基金the National Science and Technology Major Project(No.2017-VI-0002-0072)the National Key R&D Program of China(No.2017YFA0700704)+1 种基金the National Natural Science Foundation of China(Nos.51601192 and 51671188)the State Key Lab of Advanced Metals and Materials Open Fund(No.2018-Z07)。
文摘The effect of thermal exposure on microstructure and creep properties of a fourth-generation nickelbased single crystal superalloy was investigated.The thermal exposure of samples after the full heat treatment was carried out at 1000℃,1100℃ and 1140℃ for 100 h and 200 h.The γ’ coarsening,γ’ rafting and γ channel widening were observed in samples after thermal exposure.When the thermal exposure time was constant,the morphology of γ’ phase in the alloy evolved significantly with increasing aging temperature.The interracial dislocation networks in aged samples after creep ruptured gradually became irregular and sparse with the increase of exposure temperature.When the higher exposure temperature was used,enla rgement of the defect pores was observed in samples,the microcracks were more likely to initiate and propagate at the corner of these pores.After aging at 1000℃ for 100 h,the creep life at 1140℃/137 MPa was slightly longer than that of heat-treated sample,which could be attributed to the slightly coarsened γ’ phase,homogenization of refractor elements.In contrast,the creep life of sample exposed at 1140℃ for 100 h was greatly decreased.The decrease of creep life was dominated by the rafting of γ’phase,the irregular interfacial dislocation networks as well as the enlargement of homogenization pores.
基金supported by the“National Key Research and Development Program of China(Grant No.2016YFB0701403)”the“National Natural Science Foundation of China(Grant Nos.51631008 and 91860201)”+1 种基金the“111 Project(No.B170003)”financial support to the reported work.Stoichko Antonov would like to acknowledge financial support from the Alexander von Humboldt Foundation。
文摘Aero-engine turbine blades may suffer overheating during service,which can result in severe microstructural and mechanical degradation within tens of seconds.In this study,the thermal cycling creep under(950℃/15 min+1100℃/1 min)-100 MPa was performed on a directionally solidified superalloy,DZ125.The effects of overheating and thermal cycling on the creep properties were evaluated in terms of creep behavior and microstructural evolution against isothermally crept specimens under 950℃/100 MPa,950℃/270 MPa,and 1100℃/100 MPa.The results indicated that the thermal cycling creep life was reduced dramatically compared to the isothermal creep under 950℃/100 MPa.The plastic creep deformation mainly occurred during the overheating stage during the thermal cycling creep.The thermal cycling creep curve exhibited three stages,similar to the 1100℃isothermal creep,but its minimum creep rate occurred at a lower creep strain.The overheating events caused severe microstructural degradation,such as substantial dissolution ofγ'phase,earlier formation of raftedγ'microstructure,widening of theγchannels,and instability of the interfacial dislocation networks.This microstructural degradation was the main reason for the dramatic decrease in thermal cycling creep life,as the thermal cycling promoted more dislocations to cut intoγ'phase and more cracks to initiate at grain boundaries,carbides,and residual eutectic pools.This study underlines the importance of evaluating the thermal cycling creep properties of superalloys to be used as turbine blades and provides insights into the effect of thermal cycling on directionally solidified superalloys for component design.
文摘Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al based alloys. Surface analysis by XPS demonstrates that cerium addition causes the change in the oxide chemistry and provides rapid passivation of the specimen surface. The high temperature strength and creep resistance of Fe 3Al based alloys can be significantly enhanced by alloying additions of tungsten, niobium or molybdenum, especially when combined additions of tungsten with niobium or molybdenum are used. The additions of tungsten, niobium or molybdenum also result in the significant microstructural refinement and the formation of fine precipitates which are identified as M 6C type carbide in the alloys containing tungsten.
基金Project (No 51074113) supported by the National Natural ScienceFoundation of China
文摘A 9% Cr ferritic steel weld metal containing 1% Co, partially substituted for nickel, was prepared by submerged arc welding (SAW) processing. The microstructure and creep properties of the weld metal were investigated. The microstructure exhibited a fully tempered martensitic structure free of δ-ferrite. The creep properties of the obtained weld metal were inferior to those of the P92 base metal at 600 and 650 °C. The values of A and n for weld metal in the Norton power law constitution at 650 °C are 1.1×10?21 and 8.1, respectively.
基金supported by the National Natural Science Foundation of China (No. 41902268)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety (No. 2019ZDK030)+1 种基金the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (No. SKLGP2020K016)the China Postdoctoral Science Foundation (No. 2019T120871)。
文摘Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycles due to periodic water inundation and drainage may gradually accumulate creep deformation,resulting in rock structure’s damage or even geological hazards such as landslides.To fully investigate the effect of DW cycles on the creep damage properties of sandstone,triaxial creep tests were conducted on saturated sandstone with different DW cycles by using a triaxial rheometer apparatus.The experimental results show that both the instantaneous strain and the stabilized strain increase with the DW cycles.In addition,using the Burgers model,four kinds of functions including an exponentially decreasing function,a linearly decreasing function,a linearly increasing function and an exponentially increasing function were proposed to express the relationships between the shear modulus,viscoelastic parameters of the Burgers model and the deviatoric stress under different DW cycles.Through comparative analysis,it is found that the theoretical curves generated using proposed four kinds of functions are in good agreement with the experimental data.Furthermore,macromorphological and microstructural observations were performed on specimens after various triaxial rheological tests.For samples with small number of DW cycles,approximately X-shaped fracture surfaces were observed in shear failure zones,whereas several shear fractures including obvious axial and horizontal tensile cracks,and flaws were found for samples with relatively large DW cycles due to long-term propagation and evolution of micro-fissures and micro-pores.Furthermore,as the DW cycles increases,the variation in micro-structure of samples after creep failure was summarized into three stages,namely,a stage with good and dense structure,a stage with pore and fissure propagation,and a stage with extensive increase of pores,fissures and loose particles.It is concluded that the combination effect of permeation of water molecules through pores and fissures within sandstone,and the propagation of preexisting pores and fissures owing to the dissolution of mineral particles leads to further deterioration of the mechanical properties of sandstone as the number of DW cycles increases.This study provides a fundamental basis for evaluating the long-term stability of reservoir bank slopes under cyclic fluctuations of water level.
基金Project(2018BSHQYXMZZ32)supported by the Postdoctoral Science Foundation of Shaanxi Province of ChinaProject(20192109)supported by the State Key Laboratory for Mechanical Behavior of Materials,ChinaProjects(2017M623213,2018M633487)supported by the Postdoctoral Science Foundation of China
文摘After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.