The effect of surface recrystallization by heating after shot-peening on the creep rapture property and fracture behavior of a single-crystal superalloy was investigated. The results show that the creep rupture proper...The effect of surface recrystallization by heating after shot-peening on the creep rapture property and fracture behavior of a single-crystal superalloy was investigated. The results show that the creep rupture property of the single-crystal superalloy was greatly influenced by surface recrystallization. A recrystallized surface layer with a depth of 101 ~m resulted in a decrease in creep rupture life by nearly 50%, and an almost linear reduction of creep rupture life was observed with the increase of recrystallization depth. A lower strength of the recrystal- lized layer, inhomogeneous deformation between the recrystallized layer and the matrix, and stress concentration caused by notch effect resuited in the decrease in creep rupture life of the single-crystal superalloy.展开更多
After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa ar...After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.展开更多
The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,t...The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,the creep rupture time and strain strongly depend on the stacking fault energy of matrices rather than the creep friction stress,but at higher stress,the role of grain boundary carbides becomes more obvious. However,in the considerably extensive stress range investigated here,the mean creep rate is a power function of the stacking fault energy of matrices and the power index decreases with in- creasing initial applied stress.Particularly,at inter- mediate stresses the product of this index and the initial applied stress compensated by the shear modulus is same for two series of superalloys. Hence,this product may be a criterion predicting that the matrix deformation controls high tempera- ture creep rupture.展开更多
T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rup...T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rupture tests. Creep transgranular ductile rupture occurred at the 10CrMo910 matrix in the T91+10CrMo910 welded joints and creep intergranular brittle rupture occurred at the 13CrMo44 HAZ in the T91+13CrMo44 joints. Microhardness measurements showed high hardness at the heat affected zone (HAZ) of T91 and a sharply drop at the 13CrMo44 HAZ during creep rupture. The metallographic tests showed that no obvious microstructure degradation was observed in the 10CrMo910 HAZ and matrix, while creep cracks appeared at the 13CrMo44 HAZ. T91 steel had relatively high creep resistant strength in the welded joints tested. Recovery occurred in the T91 HAZ with the growth of subgrain size and the decrease of dislocation density during creep. It was concluded that the dissimilar joints of T91 and low alloy heat-resistant steel should have close creep strength matching to increase the service life of the overall joints at elevated temperature.展开更多
The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides...The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides,so the nucleation and growth rate of cracks or cavities are reduced.展开更多
The reliability of SMT soldered joints is one of the most important problems which need to be solved in the application of SMT. In this paper, the influence of grain size, stress and intermetallic compounds in joints ...The reliability of SMT soldered joints is one of the most important problems which need to be solved in the application of SMT. In this paper, the influence of grain size, stress and intermetallic compounds in joints is studied by means of testing the creep rupture life of joints at high temperature. It shows that all the crack surface consists of transgranular and intergranular fracture at 125℃, and grain size and stress are different because of different cooling rate.When the grain size is large and stress in joints is small, the creep rupture life is longer; otherwise, the life of joints decreases because of the viscid flow on grain boundary. When the Cu-Sn intermetallic compounds are present in the joints,the crack usually initiatesat the Cu-Sn compounds, the fracture tended to happen at the compounds area, and the creep rupture life will decrease with the thickness increase of Cu-Sn intermetallic compounds.展开更多
High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a...High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a challenge due to the lack of available data with well-characterized target property.Here,we proposed two cross-materials transfer learning(TL)strategies to improve the prediction of creep rupture life of high-temperature titanium alloys.Both strategies effectively utilized the knowledge or information encoded in the large dataset(753 samples)of Fe-base,Ni-base,and Co-base superalloys to enhance the surrogate model for small dataset(88 samples)of high-temperature titanium alloys.The first strategy transferred the parameters of the convolutional neural network while the second strategy fused the two datasets.The performances of the TL models were demonstrated on different test datasets with varying sizes outside the training dataset.Our TL models improved the predictions greatly compared to the mod-els obtained by straightly applying five commonly employed algorithms on high-temperature titanium alloys.This work may stimulate the use of TL-based models to accurately predict the service properties of structural materials where the available data is small and sparse.展开更多
Two types of 316 butt welds with carbon contents of 0.016%and 0.062%have been produced using the gas tungsten arc welding process.Theδ-ferrite content decreased from 7.2 to 2.8%in volume as the carbon content increas...Two types of 316 butt welds with carbon contents of 0.016%and 0.062%have been produced using the gas tungsten arc welding process.Theδ-ferrite content decreased from 7.2 to 2.8%in volume as the carbon content increased.The creeprupture strength and creep ductility of the two types of weld metals have been measured at 550℃over the stress range of 290-316 MPa and at 600℃over 230-265 MPa.The microstructure change and precipitation behavior of the weld metals were observed and related to the creep rupture properties.The creep rupture strength of the C2(0.062%C)weld metal was higher than that of the Cl(0.016%C)weld metal at both 550℃and 600℃.At 550℃,as the decrease in the applied stress,the difference of the creep-rupture life between the two weld metals diminished due to the higher depletion rate of carbon by precipitation of M_(23)C_(6) in the C2 weld metal,while at 600℃,the difference enlarged due to the massive precipitation ofσphase and extensive crack formation and propagation alongσ/austenite boundaries in the C1 weld metal.For both the C1 and C2 weld metal,the decrease in ductility was adverse with the transformation percentage and related to products of theδ-ferrite transformation.展开更多
The effect of rare earth(RE) on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel was investigated at 650 °C under different stress levels. It was found that RE could increase the time to ...The effect of rare earth(RE) on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel was investigated at 650 °C under different stress levels. It was found that RE could increase the time to creep rupture, especially at long-term creep duration. The logarithm of the time to creep rupture(lgtr) was a linear function of the applied stress(σ). RE addition was favorable to generating a high fraction of low-coincidence site lattice(CSL) boundaries which was a possible cause for improving the creep rupture resistance. The fracture surface of RE-added steel exhibited less intergranular cracks suggesting the alteration on the nature of grain boundaries due to the presence of RE. RE addition changed the morphology of the intergranular chromium carbides from continuous network shape to fragmentary distribution which was another cause for longer creep duration. These results strongly suggested that the effect of RE alloying played a crucial role in improving the creep rupture resistance.展开更多
The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electro...The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe_2(W,Mo)Laves phase has formed during creep with 200 MPa applied stress at 883 Kfor 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.展开更多
Lap joints with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancemem 63Sn37Pb based composite solder and 63Sn37Pb eutectic solder to examine the influence of stress on the creep behavior of the s...Lap joints with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancemem 63Sn37Pb based composite solder and 63Sn37Pb eutectic solder to examine the influence of stress on the creep behavior of the solder joints. The results indicate that the creep resistance of the composite solder joints is generally superior to that of the conventional 63Sn37Pb solder joints. At the same time, the creep rupture life of the composite solder joints is declined with increasing stress and drops faster than that of the 63Sn37Pb eutectic solder joints.展开更多
In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the wel...In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A 302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal.展开更多
The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argo...The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.展开更多
In this paper the method of damage measurement of metal structure at the creep is proposed.In contrast to other methods,it allows the measurement of this damage to be carried out in the process of creep test without u...In this paper the method of damage measurement of metal structure at the creep is proposed.In contrast to other methods,it allows the measurement of this damage to be carried out in the process of creep test without unloading and cooling of specimens.Experimental damage curves during creep are obtained as a result of test data processing by the suggested method.The analysis of these curves leads to a conclusion that the material damage at repture is monotonically decreasing function of the applied stress.This conclusion is an experimental verification of the theoretical result,obtained earlier.展开更多
Studies on the high temperature creep and fracture behaviours in air or in SO_2 contaminated environment for the Fe-base superalloy GH302 with flat or zigzag grain boundaries(GB) and the Ni-base superalloy Rene 80 wer...Studies on the high temperature creep and fracture behaviours in air or in SO_2 contaminated environment for the Fe-base superalloy GH302 with flat or zigzag grain boundaries(GB) and the Ni-base superalloy Rene 80 were carried out.Although the creep rupture properties of the GH302 with zigzag GB was remarkably superior to that of flat GB in air,the properties of both droped dramatically in 10% SO_2-air environment,the creep rupture properties of the directional solidified Rene 80 were much better than that of the conventionally cast alloy in air,and also kept the same property in SO_2 contaminated environment as in air.Owing to the interaction between creep and sulphidation,the failure mechanism relates to the formation of molten Ni-Ni-3S_2 eutectic along GB,led to the premature failure of the alloy.展开更多
This paper describes new methods for biaxial and triaxial creep testing. Biaxial tension and triaxial tension creep testers were developed. The performance of the machines was described and some test results were disc...This paper describes new methods for biaxial and triaxial creep testing. Biaxial tension and triaxial tension creep testers were developed. The performance of the machines was described and some test results were discussed. Stress biaxiality had almost no effect on the creep deformation and Mises potential was suitable for describing the creep deformation under biaxial and triaxial stress states. Stress biaxiality had a small influence on prolonging creep rupture time under the constant Mises stress condition.A new triaxial tension creep testing method was discussed together with the shape of the triaxial creep specimen.展开更多
The creep equation proposed in so called θ projection concept is developed in the concept of thermal activation of creep. The measured creep curves of A286 alloy are fitted by the equation. The activation energy in t...The creep equation proposed in so called θ projection concept is developed in the concept of thermal activation of creep. The measured creep curves of A286 alloy are fitted by the equation. The activation energy in theequation is evaluated, and creep rupture lives are predicted. The results are confirmed by creep tests of up to 13years.展开更多
Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys...Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys and has caused much more attention than before. Temperatures applied to soldered joints are one of the primary factors of affecting creep properties of particle enhancement composite soldered joints. In this paper single shear lap creep specimens with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancement 63Sn37 Pb based composite soldered joints and 63Sn37 Pb eutectic soldered joints to examine the influence of temperature on creep behavior of soldered joints. Results indicated that the creep resistance of soldered joints of Cu particle enhancement 63Sn37Pb based composite soldered joint was generally superior to that of the conventional 63Sn37Pb soldered joint. At the same time, creep rupture life of the composite soldered joint was declined with increasing temperature and drop faster than that of the conventional 63Sn37 Pb eutectic soldered joint.展开更多
This research is carried out on the basis of Constant Strain Rate (CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A m...This research is carried out on the basis of Constant Strain Rate (CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A mathematical model of creep internal stress is also proposed and its application is presented in this paper.展开更多
The properties of heat-resistant steel 309S at elevated properties were investigated.The results revealed a rapid decrease in the short-time tensile strength at elevated temperatures.At 1 000 ℃,the yield strength and...The properties of heat-resistant steel 309S at elevated properties were investigated.The results revealed a rapid decrease in the short-time tensile strength at elevated temperatures.At 1 000 ℃,the yield strength and tensile strength are 14% and 7% of their respective values at room temperature,respectively.The creep rupture strength was inferred in terms of the relationship between stress and duration time at high temperatures.After 1 000 h,the creep rupture strength is 37.98 MPa at 800 ℃,12.63 MPa at 900 ℃,and 7.27 MPa at 1 000 ℃.The fractures occurring at these high temperatures were intergranular in nature.Under the experimental condition,the fatigue limit stress is 25 MPa.The number of fatigue cycles and crack growth time decrease with increasing stress.Fracture morphology analysis shows that the fatigue cracks initiate on the surface of the sample and propagate through transgranular expansion.展开更多
文摘The effect of surface recrystallization by heating after shot-peening on the creep rapture property and fracture behavior of a single-crystal superalloy was investigated. The results show that the creep rupture property of the single-crystal superalloy was greatly influenced by surface recrystallization. A recrystallized surface layer with a depth of 101 ~m resulted in a decrease in creep rupture life by nearly 50%, and an almost linear reduction of creep rupture life was observed with the increase of recrystallization depth. A lower strength of the recrystal- lized layer, inhomogeneous deformation between the recrystallized layer and the matrix, and stress concentration caused by notch effect resuited in the decrease in creep rupture life of the single-crystal superalloy.
基金Project(2018BSHQYXMZZ32)supported by the Postdoctoral Science Foundation of Shaanxi Province of ChinaProject(20192109)supported by the State Key Laboratory for Mechanical Behavior of Materials,ChinaProjects(2017M623213,2018M633487)supported by the Postdoctoral Science Foundation of China
文摘After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.
文摘The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,the creep rupture time and strain strongly depend on the stacking fault energy of matrices rather than the creep friction stress,but at higher stress,the role of grain boundary carbides becomes more obvious. However,in the considerably extensive stress range investigated here,the mean creep rate is a power function of the stacking fault energy of matrices and the power index decreases with in- creasing initial applied stress.Particularly,at inter- mediate stresses the product of this index and the initial applied stress compensated by the shear modulus is same for two series of superalloys. Hence,this product may be a criterion predicting that the matrix deformation controls high tempera- ture creep rupture.
基金the financial support of the Shanxi Natural Science Foundation(20031051) Shanxi Science Institute of Power.
文摘T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rupture tests. Creep transgranular ductile rupture occurred at the 10CrMo910 matrix in the T91+10CrMo910 welded joints and creep intergranular brittle rupture occurred at the 13CrMo44 HAZ in the T91+13CrMo44 joints. Microhardness measurements showed high hardness at the heat affected zone (HAZ) of T91 and a sharply drop at the 13CrMo44 HAZ during creep rupture. The metallographic tests showed that no obvious microstructure degradation was observed in the 10CrMo910 HAZ and matrix, while creep cracks appeared at the 13CrMo44 HAZ. T91 steel had relatively high creep resistant strength in the welded joints tested. Recovery occurred in the T91 HAZ with the growth of subgrain size and the decrease of dislocation density during creep. It was concluded that the dissimilar joints of T91 and low alloy heat-resistant steel should have close creep strength matching to increase the service life of the overall joints at elevated temperature.
文摘The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides,so the nucleation and growth rate of cracks or cavities are reduced.
文摘The reliability of SMT soldered joints is one of the most important problems which need to be solved in the application of SMT. In this paper, the influence of grain size, stress and intermetallic compounds in joints is studied by means of testing the creep rupture life of joints at high temperature. It shows that all the crack surface consists of transgranular and intergranular fracture at 125℃, and grain size and stress are different because of different cooling rate.When the grain size is large and stress in joints is small, the creep rupture life is longer; otherwise, the life of joints decreases because of the viscid flow on grain boundary. When the Cu-Sn intermetallic compounds are present in the joints,the crack usually initiatesat the Cu-Sn compounds, the fracture tended to happen at the compounds area, and the creep rupture life will decrease with the thickness increase of Cu-Sn intermetallic compounds.
基金National Key Research and Development Program of China(No.2021YFB3702604)National Natural Science Foundation of China(No.52002326).
文摘High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a challenge due to the lack of available data with well-characterized target property.Here,we proposed two cross-materials transfer learning(TL)strategies to improve the prediction of creep rupture life of high-temperature titanium alloys.Both strategies effectively utilized the knowledge or information encoded in the large dataset(753 samples)of Fe-base,Ni-base,and Co-base superalloys to enhance the surrogate model for small dataset(88 samples)of high-temperature titanium alloys.The first strategy transferred the parameters of the convolutional neural network while the second strategy fused the two datasets.The performances of the TL models were demonstrated on different test datasets with varying sizes outside the training dataset.Our TL models improved the predictions greatly compared to the mod-els obtained by straightly applying five commonly employed algorithms on high-temperature titanium alloys.This work may stimulate the use of TL-based models to accurately predict the service properties of structural materials where the available data is small and sparse.
基金financially supported by the Opening Foundation of CAS Key Laboratory of Nuclear Material and Safety Assessment under Grant No.2019NMSAKF04the China Institute of Atomic Energy under Grant No.2016-DGB-I-KYSC-0024。
文摘Two types of 316 butt welds with carbon contents of 0.016%and 0.062%have been produced using the gas tungsten arc welding process.Theδ-ferrite content decreased from 7.2 to 2.8%in volume as the carbon content increased.The creeprupture strength and creep ductility of the two types of weld metals have been measured at 550℃over the stress range of 290-316 MPa and at 600℃over 230-265 MPa.The microstructure change and precipitation behavior of the weld metals were observed and related to the creep rupture properties.The creep rupture strength of the C2(0.062%C)weld metal was higher than that of the Cl(0.016%C)weld metal at both 550℃and 600℃.At 550℃,as the decrease in the applied stress,the difference of the creep-rupture life between the two weld metals diminished due to the higher depletion rate of carbon by precipitation of M_(23)C_(6) in the C2 weld metal,while at 600℃,the difference enlarged due to the massive precipitation ofσphase and extensive crack formation and propagation alongσ/austenite boundaries in the C1 weld metal.For both the C1 and C2 weld metal,the decrease in ductility was adverse with the transformation percentage and related to products of theδ-ferrite transformation.
基金Project supported by the National Natural Science Foundation of China(51101136)Natural Science Foundation of Hebei Province(E2012203013)+1 种基金College Science and Technology Research Project of Hebei Province,China(QN2014107)College Innovation Team Leader Training Program of Hebei Province,China(LJRC012)
文摘The effect of rare earth(RE) on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel was investigated at 650 °C under different stress levels. It was found that RE could increase the time to creep rupture, especially at long-term creep duration. The logarithm of the time to creep rupture(lgtr) was a linear function of the applied stress(σ). RE addition was favorable to generating a high fraction of low-coincidence site lattice(CSL) boundaries which was a possible cause for improving the creep rupture resistance. The fracture surface of RE-added steel exhibited less intergranular cracks suggesting the alteration on the nature of grain boundaries due to the presence of RE. RE addition changed the morphology of the intergranular chromium carbides from continuous network shape to fragmentary distribution which was another cause for longer creep duration. These results strongly suggested that the effect of RE alloying played a crucial role in improving the creep rupture resistance.
基金Item Sponsored by National Natural Science Foundation of China(51201061,51475315)China Postdoctoral Science Foundation(2015M571804)Natural Science Foundation of Jiangsu Province of China(BK20150329)
文摘The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe_2(W,Mo)Laves phase has formed during creep with 200 MPa applied stress at 883 Kfor 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.
基金This study is financially supported by the Foundation of Henan University of Science & Technology(No.13420060) Luoyang Advanced Hydraulic Pressure Technology Ltd. ( 6142004).
文摘Lap joints with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancemem 63Sn37Pb based composite solder and 63Sn37Pb eutectic solder to examine the influence of stress on the creep behavior of the solder joints. The results indicate that the creep resistance of the composite solder joints is generally superior to that of the conventional 63Sn37Pb solder joints. At the same time, the creep rupture life of the composite solder joints is declined with increasing stress and drops faster than that of the 63Sn37Pb eutectic solder joints.
基金the supports provided by the National Natural Science Foundation of China(Grant No.10172046)
文摘In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A 302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal.
文摘The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.
文摘In this paper the method of damage measurement of metal structure at the creep is proposed.In contrast to other methods,it allows the measurement of this damage to be carried out in the process of creep test without unloading and cooling of specimens.Experimental damage curves during creep are obtained as a result of test data processing by the suggested method.The analysis of these curves leads to a conclusion that the material damage at repture is monotonically decreasing function of the applied stress.This conclusion is an experimental verification of the theoretical result,obtained earlier.
文摘Studies on the high temperature creep and fracture behaviours in air or in SO_2 contaminated environment for the Fe-base superalloy GH302 with flat or zigzag grain boundaries(GB) and the Ni-base superalloy Rene 80 were carried out.Although the creep rupture properties of the GH302 with zigzag GB was remarkably superior to that of flat GB in air,the properties of both droped dramatically in 10% SO_2-air environment,the creep rupture properties of the directional solidified Rene 80 were much better than that of the conventionally cast alloy in air,and also kept the same property in SO_2 contaminated environment as in air.Owing to the interaction between creep and sulphidation,the failure mechanism relates to the formation of molten Ni-Ni-3S_2 eutectic along GB,led to the premature failure of the alloy.
文摘This paper describes new methods for biaxial and triaxial creep testing. Biaxial tension and triaxial tension creep testers were developed. The performance of the machines was described and some test results were discussed. Stress biaxiality had almost no effect on the creep deformation and Mises potential was suitable for describing the creep deformation under biaxial and triaxial stress states. Stress biaxiality had a small influence on prolonging creep rupture time under the constant Mises stress condition.A new triaxial tension creep testing method was discussed together with the shape of the triaxial creep specimen.
文摘The creep equation proposed in so called θ projection concept is developed in the concept of thermal activation of creep. The measured creep curves of A286 alloy are fitted by the equation. The activation energy in theequation is evaluated, and creep rupture lives are predicted. The results are confirmed by creep tests of up to 13years.
文摘Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys and has caused much more attention than before. Temperatures applied to soldered joints are one of the primary factors of affecting creep properties of particle enhancement composite soldered joints. In this paper single shear lap creep specimens with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancement 63Sn37 Pb based composite soldered joints and 63Sn37 Pb eutectic soldered joints to examine the influence of temperature on creep behavior of soldered joints. Results indicated that the creep resistance of soldered joints of Cu particle enhancement 63Sn37Pb based composite soldered joint was generally superior to that of the conventional 63Sn37Pb soldered joint. At the same time, creep rupture life of the composite soldered joint was declined with increasing temperature and drop faster than that of the conventional 63Sn37 Pb eutectic soldered joint.
文摘This research is carried out on the basis of Constant Strain Rate (CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A mathematical model of creep internal stress is also proposed and its application is presented in this paper.
文摘The properties of heat-resistant steel 309S at elevated properties were investigated.The results revealed a rapid decrease in the short-time tensile strength at elevated temperatures.At 1 000 ℃,the yield strength and tensile strength are 14% and 7% of their respective values at room temperature,respectively.The creep rupture strength was inferred in terms of the relationship between stress and duration time at high temperatures.After 1 000 h,the creep rupture strength is 37.98 MPa at 800 ℃,12.63 MPa at 900 ℃,and 7.27 MPa at 1 000 ℃.The fractures occurring at these high temperatures were intergranular in nature.Under the experimental condition,the fatigue limit stress is 25 MPa.The number of fatigue cycles and crack growth time decrease with increasing stress.Fracture morphology analysis shows that the fatigue cracks initiate on the surface of the sample and propagate through transgranular expansion.