According to the metallogenic theory by transmagmatic fluid (TMF), one magmatic intrusion is a channel of ore-bearing fluids, but not their source. Therefore, it is possible to use TMF's ability for injection into ...According to the metallogenic theory by transmagmatic fluid (TMF), one magmatic intrusion is a channel of ore-bearing fluids, but not their source. Therefore, it is possible to use TMF's ability for injection into and for escaping t^om the magmatic intrusion to evaluate its ore-forming potential. As the ore-bearing fluids cannot effectively inject into the magmatic intrusion when the magma fully crystal- lized, the cooling time and rates viscosity varied can be used to estimate the minimum critical thickness of the intrusion. One dimensional heat transfer model is used to determine the cooling time for three representative dikes of different composition (granite porphyry, quartz diorite and diabase) in the Shihu gold deposit. It also estimated the rates viscosity varied in these time interval. We took the thickness of dike at the intersection of the cooling time -- thickness curve and the rates viscosity varied versus thick- ness curve as the minimum critical thickness. For the ore-bearing fluids effectively injecting into the magma, the minimum critical thicknesses for the three representative dikes are 33.45 m for granite porphyry, 8.22 m for quartz diorite and 1.02 m for diabase, indicating that ore-bearing dikes must be thicker than each value. These results are consistent with the occurrence of ore bodies, and thus they could be applied in practice. Based on the statistical relationship between the length and the width of dikes, these critical thicknesses are used to compute critical areas: 0.0003--0.0016 km2 for diabase, 0.014--0.068 km2 for quartz diorite and 0.011-0.034 km2 for granite porphyry. This implies that ore- bearing minor intrusions have varied areas corresponding to their composition. The numerical simulation has provided the theoretical threshold of exposed thickness and area of the ore-bearing intrusion. These values can be used to determine the ore-forming potentials of dikes.展开更多
In this work the elastic field of an edge dislocation in a half-space with the effect of surface energy has been obtained. The elastic field is then used to study the image force on the dislocation, the critical thick...In this work the elastic field of an edge dislocation in a half-space with the effect of surface energy has been obtained. The elastic field is then used to study the image force on the dislocation, the critical thickness for dislocation generation in epitaxial thin films with strain mismatch and the yielding strength of thin films on substrates. The results show that the image forces on the dislocation deviate from the conventional solutions when the distance of the dislocation from the free surface is smaller than several times of the characteristic length. Also due to the effect of surface energy, the critical thickness for dislocation generation is smaller than that predicted by the conventional elastic solutions and the extent of the deviation depends on the magnitude of mismatch strain. In contrast, the effect of surface energy on the yielding strength for many practical thin films can be neglected except for some soft ones where the characteristic length is comparable to the thickness.展开更多
Based on the theories of finite deformation elasticity, electromechanical responses and instability of an incompressible electro-active polymer (EAP) cylindrical shell, which is subjected to an internal pressure and...Based on the theories of finite deformation elasticity, electromechanical responses and instability of an incompressible electro-active polymer (EAP) cylindrical shell, which is subjected to an internal pressure and a static electric field, are studied. Deformation curves and distribution of stresses are obtained. It is found that an internal pressure together with an electric field may cause the unstable non-monotonic deforma- tion of the shell. It is also shown that a critical thickness for the shell exists, and the shell may undergo the unstable deformation if its thickness is less than this critical value. In addition, the effects of the electric field, axial stretch, thickness, and internal pressure on the instability of the shell are discussed.展开更多
Strain and stress were simulated using finite element method(FEM)for threeⅢ-V-on-Insulator(Ⅲ-VOI)structures,i.e.,InP/SiO2/Si,InP/Al2O3/SiO2/Si,and GaAs/Al2O3/SiO2/Si,fabricated by ion-slicing as the substrates for o...Strain and stress were simulated using finite element method(FEM)for threeⅢ-V-on-Insulator(Ⅲ-VOI)structures,i.e.,InP/SiO2/Si,InP/Al2O3/SiO2/Si,and GaAs/Al2O3/SiO2/Si,fabricated by ion-slicing as the substrates for optoelectronic devices on Si.The thermal strain/stress imposes no risk for optoelectronic structures grown on InPOI at a normal growth temperature using molecular beam epitaxy.Structures grown on GaAsOI are more dangerous than those on InPOI due to a limited critical thickness.The intermedia Al2O3 layer was intended to increase the adherence while it brings in the largest risk.The simulated results reveal thermal stress on Al2O3 over 1 GPa,which is much higher than its critical stress for interfacial fracture.InPOI without an Al2O3 layer is more suitable as the substrate for optoelectronic integration on Si.展开更多
The effects of HDPE matrix toughness on the brittle-ductile transition of HDPE/CaCO_3blends are investigated. Not all HDPE can be toughened by CaCO_3 particles. The ability of thematrix to yield plays a fundamental ro...The effects of HDPE matrix toughness on the brittle-ductile transition of HDPE/CaCO_3blends are investigated. Not all HDPE can be toughened by CaCO_3 particles. The ability of thematrix to yield plays a fundamental role in determing whether HDPE can be toughened or not.There exists a critical matrix toughness (I_(sc)≈45J/m) below which HDPE can not be toughenedobservably by CaCO_3 particle at given average size, and above which the critical matrix ligamentthickness (τ_?) is proportional to matrix impact strength.展开更多
The energy dissipation of flood discharges has been one of important problems that affect directly the safety of hydropower projects. The energy dissipater with sudden reduction and sudden enlargement forms, used wide...The energy dissipation of flood discharges has been one of important problems that affect directly the safety of hydropower projects. The energy dissipater with sudden reduction and sudden enlargement forms, used widely in large-scale projects has been a kind of effective structure for energy dissipation. The concept of critical thickness was defined, which is related to both the geometric parameters and the hydraulic parameters of the energy dissipater, and the factors affecting the critical thickness, were analzsed by means of dimensional analysis. The empirical expression about the critical thickness was obtained and could be used as the criterion to distinguish the flows through the energy dissipater, i.e., the plug flow and the orifice plate flow. The error analysis showed that the critical thickness calculated by the expression has the errors of smaller than 10% in the estimation of the flows for the energy dissipater mentioned above.展开更多
For a low carbon steel tube with small wall factor D/t and bending radius R,the over-thinning induced localized necking is one dominant failure in tube numerical control(NC) bending process,which strongly restricts th...For a low carbon steel tube with small wall factor D/t and bending radius R,the over-thinning induced localized necking is one dominant failure in tube numerical control(NC) bending process,which strongly restricts the bendability limit of the tube.In addition,the deterioration of bendability of a tube is increased by the existence of the weak weld region.Therefore,an important issue is how to determinate and predict the welded tube bendability limit.In the present study,a finite element(FE) model with weld and subdivided heat affected zones under ABAQUS platform is employed to explore the deformation behaviors of welded tube NC bending.A localized necking criterion based on the critical thickness thinning is used to predict the critical principal strains,critical bending radius and burst location during the forming process.It is found that the failures always occur at the rigid supporting point of mandrel flexible balls near the tangent point at the outside of the bend,where the wall thickness of the tube is the lowest.The bending limit curves(BLCs) of the QSTE340 welded tube are obtained by shifting the standard shaped forming limit curve to the critical principal strains along the major strain axis.Comparison between the numerical and experimental results has shown that the BLC and critical bending radius predictions agree well with the experimental results.In addition,the effect of weld positions on BLC is discussed,the weld region shows an almost negligible effect on the forming limit at a non-critical location that is far away from the outside of the bend.However,when the weld is at the large tensile deformation region on the outside of the bend,a decrease of the forming limit strains is seen.展开更多
Granular matter possesses impact-absorbing property due to its energy dissipation character.To investigate the impact-absorbing capacity of granular matter,the discrete element method(DEM)is adopted to simulate the im...Granular matter possesses impact-absorbing property due to its energy dissipation character.To investigate the impact-absorbing capacity of granular matter,the discrete element method(DEM)is adopted to simulate the impact of a spherical projectile on to a granular bed.The dynamic responses of the projectile are obtained for both thin and thick granular bed.The penetration depth of the projectile and the first impact peak are investigated with different bed thicknesses and impact velocities.Determining a suitable bed thickness is crucial to the buffering effect of granular matter.The first impact peak is independent of bed thickness when the thickness is larger than the critical thickness.展开更多
The electrical characterization of AlGaN/GaN interface is reported.The dependence of two-dimensional electron gas(2-DEG) density at the interface on the Al mole fraction and thickness of AIGaN layer as well as on th...The electrical characterization of AlGaN/GaN interface is reported.The dependence of two-dimensional electron gas(2-DEG) density at the interface on the Al mole fraction and thickness of AIGaN layer as well as on the thickness of GaN cap layer is presented.This information can be used to design and fabricate AlGaN/GaN based MODFET(modulation doped field effect transistor) for optimum DC and RF characteristics.展开更多
Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials b...Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteris- tics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.展开更多
基金supported by National Program on Key Basic Research Project(973 Progranm)(Grant No.2007CB411304)National Natural Science Foundation of China(Grant No. 90814007)+1 种基金Geological Survey of China Project(Grant No. 1212010911028)China-Russia Cooperation Fund Project (Grant No.40911120079)
文摘According to the metallogenic theory by transmagmatic fluid (TMF), one magmatic intrusion is a channel of ore-bearing fluids, but not their source. Therefore, it is possible to use TMF's ability for injection into and for escaping t^om the magmatic intrusion to evaluate its ore-forming potential. As the ore-bearing fluids cannot effectively inject into the magmatic intrusion when the magma fully crystal- lized, the cooling time and rates viscosity varied can be used to estimate the minimum critical thickness of the intrusion. One dimensional heat transfer model is used to determine the cooling time for three representative dikes of different composition (granite porphyry, quartz diorite and diabase) in the Shihu gold deposit. It also estimated the rates viscosity varied in these time interval. We took the thickness of dike at the intersection of the cooling time -- thickness curve and the rates viscosity varied versus thick- ness curve as the minimum critical thickness. For the ore-bearing fluids effectively injecting into the magma, the minimum critical thicknesses for the three representative dikes are 33.45 m for granite porphyry, 8.22 m for quartz diorite and 1.02 m for diabase, indicating that ore-bearing dikes must be thicker than each value. These results are consistent with the occurrence of ore bodies, and thus they could be applied in practice. Based on the statistical relationship between the length and the width of dikes, these critical thicknesses are used to compute critical areas: 0.0003--0.0016 km2 for diabase, 0.014--0.068 km2 for quartz diorite and 0.011-0.034 km2 for granite porphyry. This implies that ore- bearing minor intrusions have varied areas corresponding to their composition. The numerical simulation has provided the theoretical threshold of exposed thickness and area of the ore-bearing intrusion. These values can be used to determine the ore-forming potentials of dikes.
文摘In this work the elastic field of an edge dislocation in a half-space with the effect of surface energy has been obtained. The elastic field is then used to study the image force on the dislocation, the critical thickness for dislocation generation in epitaxial thin films with strain mismatch and the yielding strength of thin films on substrates. The results show that the image forces on the dislocation deviate from the conventional solutions when the distance of the dislocation from the free surface is smaller than several times of the characteristic length. Also due to the effect of surface energy, the critical thickness for dislocation generation is smaller than that predicted by the conventional elastic solutions and the extent of the deviation depends on the magnitude of mismatch strain. In contrast, the effect of surface energy on the yielding strength for many practical thin films can be neglected except for some soft ones where the characteristic length is comparable to the thickness.
基金Project supported by the National Natural Science Foundation of China(No.10772104)the Shanghai Leading Academic Discipline Project(No.S30106)
文摘Based on the theories of finite deformation elasticity, electromechanical responses and instability of an incompressible electro-active polymer (EAP) cylindrical shell, which is subjected to an internal pressure and a static electric field, are studied. Deformation curves and distribution of stresses are obtained. It is found that an internal pressure together with an electric field may cause the unstable non-monotonic deforma- tion of the shell. It is also shown that a critical thickness for the shell exists, and the shell may undergo the unstable deformation if its thickness is less than this critical value. In addition, the effects of the electric field, axial stretch, thickness, and internal pressure on the instability of the shell are discussed.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFE0131300)the National Natural Science Foundation of China(Grant Nos.U1732268,61874128,11622545,61851406,11705262,and 61804157)+5 种基金the Frontier Science Key Program of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC032)the Chinese-Austrian Cooperative Research and Development Project(Grant No.GJHZ201950)the Science and Technology Innovation Action Plan Program of Shanghai,China(Grant No.17511106202)the Program of Shanghai Academic Research Leader,China(Grant No.19XD1404600)the Sailing Program of Shanghai,China(Grant Nos.19YF1456200 and 19YF1456400)the K C Wong Education Foundation(Grant No.GJTD-2019-11).
文摘Strain and stress were simulated using finite element method(FEM)for threeⅢ-V-on-Insulator(Ⅲ-VOI)structures,i.e.,InP/SiO2/Si,InP/Al2O3/SiO2/Si,and GaAs/Al2O3/SiO2/Si,fabricated by ion-slicing as the substrates for optoelectronic devices on Si.The thermal strain/stress imposes no risk for optoelectronic structures grown on InPOI at a normal growth temperature using molecular beam epitaxy.Structures grown on GaAsOI are more dangerous than those on InPOI due to a limited critical thickness.The intermedia Al2O3 layer was intended to increase the adherence while it brings in the largest risk.The simulated results reveal thermal stress on Al2O3 over 1 GPa,which is much higher than its critical stress for interfacial fracture.InPOI without an Al2O3 layer is more suitable as the substrate for optoelectronic integration on Si.
基金This project is supported by the National Natural Science Foundation of China.
文摘The effects of HDPE matrix toughness on the brittle-ductile transition of HDPE/CaCO_3blends are investigated. Not all HDPE can be toughened by CaCO_3 particles. The ability of thematrix to yield plays a fundamental role in determing whether HDPE can be toughened or not.There exists a critical matrix toughness (I_(sc)≈45J/m) below which HDPE can not be toughenedobservably by CaCO_3 particle at given average size, and above which the critical matrix ligamentthickness (τ_?) is proportional to matrix impact strength.
基金supported by the Ministry of Science and Technology of China(Grant No.2008BAB19B04)
文摘The energy dissipation of flood discharges has been one of important problems that affect directly the safety of hydropower projects. The energy dissipater with sudden reduction and sudden enlargement forms, used widely in large-scale projects has been a kind of effective structure for energy dissipation. The concept of critical thickness was defined, which is related to both the geometric parameters and the hydraulic parameters of the energy dissipater, and the factors affecting the critical thickness, were analzsed by means of dimensional analysis. The empirical expression about the critical thickness was obtained and could be used as the criterion to distinguish the flows through the energy dissipater, i.e., the plug flow and the orifice plate flow. The error analysis showed that the critical thickness calculated by the expression has the errors of smaller than 10% in the estimation of the flows for the energy dissipater mentioned above.
基金supported by the National Natural Science Foundation of China (Grant No. 50875216)111 Project (Grant No. B08040)
文摘For a low carbon steel tube with small wall factor D/t and bending radius R,the over-thinning induced localized necking is one dominant failure in tube numerical control(NC) bending process,which strongly restricts the bendability limit of the tube.In addition,the deterioration of bendability of a tube is increased by the existence of the weak weld region.Therefore,an important issue is how to determinate and predict the welded tube bendability limit.In the present study,a finite element(FE) model with weld and subdivided heat affected zones under ABAQUS platform is employed to explore the deformation behaviors of welded tube NC bending.A localized necking criterion based on the critical thickness thinning is used to predict the critical principal strains,critical bending radius and burst location during the forming process.It is found that the failures always occur at the rigid supporting point of mandrel flexible balls near the tangent point at the outside of the bend,where the wall thickness of the tube is the lowest.The bending limit curves(BLCs) of the QSTE340 welded tube are obtained by shifting the standard shaped forming limit curve to the critical principal strains along the major strain axis.Comparison between the numerical and experimental results has shown that the BLC and critical bending radius predictions agree well with the experimental results.In addition,the effect of weld positions on BLC is discussed,the weld region shows an almost negligible effect on the forming limit at a non-critical location that is far away from the outside of the bend.However,when the weld is at the large tensile deformation region on the outside of the bend,a decrease of the forming limit strains is seen.
基金This study is financially supported by the National Basic Research Program of China(Grant No.2010CB731502)the National Natural Science Foundation of China(Grant Nos.U1234209 and 41176012).
文摘Granular matter possesses impact-absorbing property due to its energy dissipation character.To investigate the impact-absorbing capacity of granular matter,the discrete element method(DEM)is adopted to simulate the impact of a spherical projectile on to a granular bed.The dynamic responses of the projectile are obtained for both thin and thick granular bed.The penetration depth of the projectile and the first impact peak are investigated with different bed thicknesses and impact velocities.Determining a suitable bed thickness is crucial to the buffering effect of granular matter.The first impact peak is independent of bed thickness when the thickness is larger than the critical thickness.
文摘The electrical characterization of AlGaN/GaN interface is reported.The dependence of two-dimensional electron gas(2-DEG) density at the interface on the Al mole fraction and thickness of AIGaN layer as well as on the thickness of GaN cap layer is presented.This information can be used to design and fabricate AlGaN/GaN based MODFET(modulation doped field effect transistor) for optimum DC and RF characteristics.
文摘Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteris- tics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.