Background:The heterogeneity of prognosis and treatment benefits among patients with gliomas is due to tumor microenvironment characteristics.However,biomarkers that reflect microenvironmental characteristics and predic...Background:The heterogeneity of prognosis and treatment benefits among patients with gliomas is due to tumor microenvironment characteristics.However,biomarkers that reflect microenvironmental characteristics and predict the prognosis of gliomas are limited.Therefore,we aimed to develop a model that can effectively predict prognosis,differentiate microenvironment signatures,and optimize drug selection for patients with glioma.Materials and Methods:The CIBERSORT algorithm,bulk sequencing analysis,and single-cell RNA(scRNA)analysis were employed to identify significant cross-talk genes between M2 macrophages and cancer cells in glioma tissues.A predictive model was constructed based on cross-talk gene expression,and its effect on prognosis,recurrence prediction,and microenvironment characteristics was validated in multiple cohorts.The effect of the predictive model on drug selection was evaluated using the OncoPredict algorithm and relevant cellular biology experiments.Results:A high abundance of M2 macrophages in glioma tissues indicates poor prognosis,and cross-talk between macrophages and cancer cells plays a crucial role in shaping the tumor microenvironment.Eight genes involved in the cross-talk between macrophages and cancer cells were identified.Among them,periostin(POSTN),chitinase 3 like 1(CHI3L1),serum amyloid A1(SAA1),and matrix metallopeptidase 9(MMP9)were selected to construct a predictive model.The developed model demonstrated significant efficacy in distinguishing patient prognosis,recurrent cases,and characteristics of high inflammation,hypoxia,and immunosuppression.Furthermore,this model can serve as a valuable tool for guiding the use of trametinib.Conclusions:In summary,this study provides a comprehensive understanding of the interplay between M2 macrophages and cancer cells in glioma;utilizes a cross-talk gene signature to develop a predictive model that can predict the differentiation of patient prognosis,recurrence instances,and microenvironment characteristics;and aids in optimizing the application of trametinib in glioma patients.展开更多
Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose...Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose and indole-3-acetic acid(IAA)on growth and development of apple trees.To examine the potential roles of glucose and IAA in root architecture,root nitrogen(N)metabolism and photosynthetic capacity in‘Hanfu’(Malus domestica),a total of five treatments was established:single application of glucose,IAA,and auxin polar transport inhibitor(2,3,5-triiodobenzoic acid,TIBA),combined application of glucose with TIBA and that of glucose with IAA.The combined application of glucose with IAA improved root topology system and endogenous IAA content by altering the mRNA levels of several genes involved in root growth,auxin transport and biosynthesis.Moreover,the increased N metabolism enzyme activities and levels of genes expression related to N in roots may suggest higher rates of transformation of nitrate(NO3--N)into amino acids application of glucose and IAA.Contrarily,single application of TIBA decreased the expression levels of auxin transport gene,hindered root growth and decreased endogenous IAA content.Glucose combined with TIBA application effectively attenuated TIBA-induced reductions in root topology structure,photosynthesis and N metabolism activity,and mRNA expression levels involved in auxin biosynthesis and transport.Taken together,glucose application probably changes the expression level of auxin synthesis and transport genes,and induce the allocation of endogenous IAA in root,and thus improves root architecture and N metabolism of root in soil with deficit carbon.展开更多
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Dere...Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-β/ BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-β/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-β/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/ Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.展开更多
The emerging role of gut microbiota as a key player in the development of neurodegenerative disorders: Mammals have evolved together with commensal microbiota to establish a symbiotic relationship in which they regula...The emerging role of gut microbiota as a key player in the development of neurodegenerative disorders: Mammals have evolved together with commensal microbiota to establish a symbiotic relationship in which they regulate reciprocally by synthesizing and responding to several common chemical substances. In this regard, gut microbiota constitutes a consortium of bacteria that not only participates in the degradation of nutrients, but also produces metabolites, fatty acids and neurotransmitters that can act on the enzymes and receptors expressed in eukaryotic cells, which considerably affects the physiology of the host and contribute to maintaining homeostasis (Lyte, 2013).展开更多
Today the most important challenge facing the pediatrician is the increasing prevalence of chronic diseases. With this regard, pediatricians play a key role in the management of these conditions. The closeness with th...Today the most important challenge facing the pediatrician is the increasing prevalence of chronic diseases. With this regard, pediatricians play a key role in the management of these conditions. The closeness with the family, the knowledge of the clinical case and the care continuity allow the pediatrician to acquire a position of director of every case. When pathological events have a chronic feature, suddenly the quality of life of the whole family changes. For this reason the first communication of chronic disease is very important and the task of the pediatrician should be to provide a positive message to help the family in facing the difficulty of this new challenge. The bronchial asthma is the most common chronic disease worldwide. The incidence, the prevalence, and the mortality of the disease have increased in children over the past decades. These trends are particularly marked above all in preschool children. The success reached by Pediatricians is closely related to the compliance and the implementation of the therapy followed by the little patient and his family. With this regard authors, in this review, focus on the illustration of several strategies, based on the pediatrician’ skills and medicine documents, that can be used for the improvement of communication among pedia- trician-family and child, never forgetting the hu- man aspect of the same doctor, that should con- ciliate with the scientific knowledge in the taking care of a specific chronic disease.展开更多
The delay fault induced by cross-talk effect is one of the difficult problems in the fault diagnosis of digital circuit. An intelligent fault diagnosis based on IDDT testing and support vector machines (SVM) classif...The delay fault induced by cross-talk effect is one of the difficult problems in the fault diagnosis of digital circuit. An intelligent fault diagnosis based on IDDT testing and support vector machines (SVM) classifier was proposed in this paper. Firstly, the fault model induced by cross-talk effect and the IDDT testing method were analyzed, and then a delay fault localization method based on SVM was presented. The fault features of the sampled signals were extracted by wavelet packet decomposition and served as input parameters of SVM classifier to classify the different fault types. The simulation results illustrate that the method presented is accurate and effective, reaches a high diagnosis rate above 95%.展开更多
Objective: BCR/ABL oncoprotein-expression is associated with uncontrolled cell growth. Sphingosine kinase 1 (SPK1) regulates the production of sphingosine 1-phosphate (S1P), a key lipid signal molecular in cell p...Objective: BCR/ABL oncoprotein-expression is associated with uncontrolled cell growth. Sphingosine kinase 1 (SPK1) regulates the production of sphingosine 1-phosphate (S1P), a key lipid signal molecular in cell proliferation and survival. The objective of this study was to elucidate the roles of S1P and its receptors in bcr/abl positive chronic myeloid leukemia (CML) cells. Methods: The expressions of SIP receptors: S1P1, S1P2 and S1P3 in CML cells were detected by RT-PCR. SPK1 expression, activity and extracellular S1P were determined in ECV304 and HL-60 cells which were transfected with bcr/abl gene. To elucidate the relationship between the BCR/ABL, ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase), SPK/S 1P and S 1P/S 1 P2 signal pathways, bcr/abl positive CML cell line K562 was treated with STI571, PD98059, N,N-dimethyl sphingosine (DMS) and JTE-013. Results: Retrovirus-mediated overexpression of bcr/abl gene in ECV304 and HL-60 cells resulted in upregulation of the expression, activity of SPK1 and increase of the secretion of SIP, whereas treatment of STI571 and PD98059 decreased the BCR/ABL-induced S1P secretion. Treatment of DMS reduced S1P secretion and P42/44MAPK phosphorylation. S1P2-selective antagonist JTE-013 could also decrease P42/44MAPK phosphorylation. Conclusion: These results suggest that BCR/ABL up-regulates extracellular sphingosine 1-phosphate through sphingosine kinase 1 and there is cross-talk between SPK1/S1P/S1P2 and P42/44MAPK in bcr/abl positive CML cells.展开更多
This review addresses the growing interest for potassium-ion full-cells(KIFCs)in view of the transition from potassium-ion half-cells(KIHCs)toward commercial K-ion batteries(KIBs).It focuses on the key parameters of K...This review addresses the growing interest for potassium-ion full-cells(KIFCs)in view of the transition from potassium-ion half-cells(KIHCs)toward commercial K-ion batteries(KIBs).It focuses on the key parameters of KIFCs such as the electrode/electrolyte interfaces challenge,major barriers,and recent advancements in KIFCs.The strategies for enhancing KIFC performance,including interfaces co ntrol,electrolyte optimization,electrodes capacity ratio,electrode material screening and electrode design,are discussed.The review highlights the need to evaluate KIBs in full-cell configurations as half-cell results are strongly impacted by the K metal reactivity.It also emphasizes the importance of understanding solid electrolyte interphase(SEI)formation in KIFCs and explores promising nonaqueous as well as quasiand all-solid-state electrolytes options.This review thus paves the way for practical,cost-effective,and scalable KIBs as energy storage systems by offering insights and guidance for future research.展开更多
BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skelet...BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle.However,despite of the decades of research,whether macrophages infiltration and polarization in skeletal muscle under high glucose(HG)milieus results in the development of IR is yet to be elucidated.C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation.Further exploration of macrophages'role in myoblasts IR and the dynamics of their infiltration and polarization is warranted.AIM To evaluate interactions between myoblasts and macrophages under HG,and its effects on inflammation and IR in skeletal muscle.METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining.Then,we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus.The effects of myoblasts on macrophages were explored through morphological observation,CCK-8 assay,Flow Cytometry,and enzyme-linked immunosorbent assay.The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation,CCK-8 assay,Immunofluorescence,and 2-NBDG assay.RESULTS The F4/80 and co-localization of F4/80 and CD86 increased,and the myofiber size decreased in IR group(P<0.01,g=6.26).Compared to Mc group,F4/80+CD86+CD206-cells,tumor necrosis factor-α(TNFα),inerleukin-1β(IL-1β)and IL-6 decreased,and IL-10 increased in McM group(P<0.01,g>0.8).In McM+HG group,F4/80+CD86+CD206-cells,monocyte chemoattractant protein 1,TNFα,IL-1βand IL-6 were increased,and F4/80+CD206+CD86-cells and IL-10 were decreased compared with Mc+HG group and McM group(P<0.01,g>0.8).Compered to M group,myotube area,myotube number and E-MHC were increased in MMc group(P<0.01,g>0.8).In MMc+HG group,myotube area,myotube number,E-MHC,GLUT4 and glucose uptake were decreased compared with M+HG group and MMc group(P<0.01,g>0.8).CONCLUSION Interactions between myoblasts and macrophages under HG milieus results in inflammation and IR,which support that the macrophage may serve as a promising therapeutic target for skeletal muscle atrophy and IR.展开更多
Plant development is a complex process influenced by exogenous and endogenous elements.A series of postembryonic developmental events is involved to form the final architecture and contend with the changing environmen...Plant development is a complex process influenced by exogenous and endogenous elements.A series of postembryonic developmental events is involved to form the final architecture and contend with the changing environment.MicroRNA(miRNA) is one of endogenous non-coding RNAs,which plays an important role in plant developmental regulation.In this review,we summarized 34 miRNA families that are closely associated with plant development.Among these families,nine are expressed only in specific organs,whereas 20 families are expressed in at least two different organs.It is known that some miRNAs are expressed across most processes of plant growth,while some appear only at particular developmental stages or under special environmental conditions such as drought,waterlogging and short-day time.These miRNAs execute their diverse functions by regulating developmental gene expression levels,interacting with phytohormone signaling response,participating in the biogenesis of ta-siRNAs and affecting the production of miRNAs.展开更多
Neuronal ion channels of different types often do not function independently but will inhibit or potentiate the activity of other types of channels,a process called cross-talk.The N-methyl-D-aspartate receptor (NMDA r...Neuronal ion channels of different types often do not function independently but will inhibit or potentiate the activity of other types of channels,a process called cross-talk.The N-methyl-D-aspartate receptor (NMDA receptor) and the γ-aminobutyric acid type A receptor (GABAA receptor) are important excitatory and inhibitory receptors in the central nervous system,respectively.Currently,cross-talk between the NMDA receptor and the GABAA receptor,particularly in the central auditory system,is not well understood.In the present study,we investigated functional interactions between the NMDA receptor and the GABAA receptor using whole-cell patch-clamp techniques in cultured neurons from the inferior colliculus,which is an important nucleus in the central auditory system.We found that the currents induced by aspartate at 100 μmol L-1 were suppressed by the pre-perfusion of GABA at 100 μmol L-1,indicating cross-inhibition of NMDA receptors by activation of GABAA receptors.Moreover,we found that the currents induced by GABA at 100 μmol L-1 (IGABA) were not suppressed by the pre-perfusion of 100 μmol L-1 aspartate,but those induced by GABA at 3 μmol L-1 were suppressed,indicating concentration-dependent cross-inhibition of GABAA receptors by activation of NMDA receptors.In addition,inhibition of IGABA by aspartate was not affected by blockade of voltage-dependent Ca2+ channels with CdCl2 in a solution that contained Ca2+,however,CdCl2 effectively attenuated the inhibition of IGABA by aspartate when it was perfused in a solution that contained Ba2+ instead of Ca2+ or a solution that contained Ca2+ and 10 mmol L-1 BAPTA,a membrane-permeable Ca2+ chelator,suggesting that this inhibition is mediated by Ca2+ influx through NMDA receptors,rather than voltage-dependent Ca2+ channels.Finally,KN-62,a potent inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII),reduced the inhibition of IGABA by aspartate,indicating the involvement of CaMKII in this cross-inhibition.Our study demonstrates a functional interaction between NMDA and GABAA receptors in the inferior colliculus of rats.The presence of cross-talk between these receptors suggests that the mechanisms underlying information processing in the central auditory system may be more complex than previously believed.展开更多
Background Signaling pathways that regulate the production of cytokines and destructive enzymes have been implicated in rheumatoid arthritis (RA) pathogenesis. There are co-relations between signaling pathways. The ...Background Signaling pathways that regulate the production of cytokines and destructive enzymes have been implicated in rheumatoid arthritis (RA) pathogenesis. There are co-relations between signaling pathways. The aim of this study was to investigate interactions and cross-talks between MEK1/2-extracellular signal-related kinase (ERK1/2) signaling and G protein-couple signaling in synoviocytes of collagen-induced arthritis (CIA) rats by the stimulation of interleukin-1 (IL-1), U0126, isoprenaline hydrochloride and aminophyline respectively. Methods Twenty Sprague-Dawley (SD) rats were induced by chicken type II collagen. Synoviocytes of CIA rats were isolated and cultured. The expressions of Gi, phosphorylated MEK1/2 (p-MEK1/2) and phosphorylated ERK1/2 (p-ERK1/2) were detected by Western blotting, cAMP level and protein kinase A (PKA) activity were measured by radioimmunoassay and kinase-glo luminescent kinase assay respectively. Results There was remarkable inflammation in CIA rats accompanied by swelling paws, hyperplastic synovium, pannus and cartilage erosion, cAMP level and PKA activity of synoviocytes decreased. Gi, p-ERK1/2 and p-MEK1/2 increased, rlL-la improved the expression of Gi, p-ERK1/2 and p-MEK1/2, cAMP and PKA increased with stimulation of rlL-1α. U0126 inhibited Gi, cAMP and PKA of synoviocytes stimulated by rlL-la. Isoprenaline hydrochloride enhanced Gi, cAMP and PKA, but had no effects on p-MEK1/2 and p-ERK1/2. Aminophyline increased cAMP and PKA, but inhibited p-MEK1/2 and p-ERK1/2. Conclusions Mitogen-activated protein kinases (MAPKs) and G protein-couple signaling are associated with synovitis. There are cross talks between MAPKs and G protein-couple signaling. The two signaling pathways represent potential therapeutic targets for RA.展开更多
基金funded by the Scientific Research Project of the Higher Education Department of Guizhou Province[Qianjiaoji 2022(187)]Department of Education of Guizhou Province[Guizhou Teaching and Technology(2023)015]+1 种基金Guizhou Medical University National Natural Science Foundation Cultivation Project(22NSFCP45)China Postdoctoral Science Foundation Project(General Program No.2022M720929).
文摘Background:The heterogeneity of prognosis and treatment benefits among patients with gliomas is due to tumor microenvironment characteristics.However,biomarkers that reflect microenvironmental characteristics and predict the prognosis of gliomas are limited.Therefore,we aimed to develop a model that can effectively predict prognosis,differentiate microenvironment signatures,and optimize drug selection for patients with glioma.Materials and Methods:The CIBERSORT algorithm,bulk sequencing analysis,and single-cell RNA(scRNA)analysis were employed to identify significant cross-talk genes between M2 macrophages and cancer cells in glioma tissues.A predictive model was constructed based on cross-talk gene expression,and its effect on prognosis,recurrence prediction,and microenvironment characteristics was validated in multiple cohorts.The effect of the predictive model on drug selection was evaluated using the OncoPredict algorithm and relevant cellular biology experiments.Results:A high abundance of M2 macrophages in glioma tissues indicates poor prognosis,and cross-talk between macrophages and cancer cells plays a crucial role in shaping the tumor microenvironment.Eight genes involved in the cross-talk between macrophages and cancer cells were identified.Among them,periostin(POSTN),chitinase 3 like 1(CHI3L1),serum amyloid A1(SAA1),and matrix metallopeptidase 9(MMP9)were selected to construct a predictive model.The developed model demonstrated significant efficacy in distinguishing patient prognosis,recurrent cases,and characteristics of high inflammation,hypoxia,and immunosuppression.Furthermore,this model can serve as a valuable tool for guiding the use of trametinib.Conclusions:In summary,this study provides a comprehensive understanding of the interplay between M2 macrophages and cancer cells in glioma;utilizes a cross-talk gene signature to develop a predictive model that can predict the differentiation of patient prognosis,recurrence instances,and microenvironment characteristics;and aids in optimizing the application of trametinib in glioma patients.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFD1000201)National Natural Science Foundation(Grant No.31972359)+1 种基金Earmarked Fund for CARS(Grant No.CARS-27)Agricultural Research and Industrialization Project of Liaoning Province(Grant No.2020JH2/10200028).
文摘Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose and indole-3-acetic acid(IAA)on growth and development of apple trees.To examine the potential roles of glucose and IAA in root architecture,root nitrogen(N)metabolism and photosynthetic capacity in‘Hanfu’(Malus domestica),a total of five treatments was established:single application of glucose,IAA,and auxin polar transport inhibitor(2,3,5-triiodobenzoic acid,TIBA),combined application of glucose with TIBA and that of glucose with IAA.The combined application of glucose with IAA improved root topology system and endogenous IAA content by altering the mRNA levels of several genes involved in root growth,auxin transport and biosynthesis.Moreover,the increased N metabolism enzyme activities and levels of genes expression related to N in roots may suggest higher rates of transformation of nitrate(NO3--N)into amino acids application of glucose and IAA.Contrarily,single application of TIBA decreased the expression levels of auxin transport gene,hindered root growth and decreased endogenous IAA content.Glucose combined with TIBA application effectively attenuated TIBA-induced reductions in root topology structure,photosynthesis and N metabolism activity,and mRNA expression levels involved in auxin biosynthesis and transport.Taken together,glucose application probably changes the expression level of auxin synthesis and transport genes,and induce the allocation of endogenous IAA in root,and thus improves root architecture and N metabolism of root in soil with deficit carbon.
文摘Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-β/ BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-β/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-β/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/ Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.
基金supported by Programa de Apoyo a Centros con Financiamiento Basal AFB-170004(to Fundación Ciencia&Vida)from “Comisión Nacional de Investigación Científica y Tecnológica de Chile(CONICYT)”by grants FONDECYT-1170093 from Fondo Nacional de Desarrollo Científico y Tecnológico de ChileMJFF-10332.01 and MJFF-15076 from Michael J.Fox Foundation for Parkinson Research
文摘The emerging role of gut microbiota as a key player in the development of neurodegenerative disorders: Mammals have evolved together with commensal microbiota to establish a symbiotic relationship in which they regulate reciprocally by synthesizing and responding to several common chemical substances. In this regard, gut microbiota constitutes a consortium of bacteria that not only participates in the degradation of nutrients, but also produces metabolites, fatty acids and neurotransmitters that can act on the enzymes and receptors expressed in eukaryotic cells, which considerably affects the physiology of the host and contribute to maintaining homeostasis (Lyte, 2013).
文摘Today the most important challenge facing the pediatrician is the increasing prevalence of chronic diseases. With this regard, pediatricians play a key role in the management of these conditions. The closeness with the family, the knowledge of the clinical case and the care continuity allow the pediatrician to acquire a position of director of every case. When pathological events have a chronic feature, suddenly the quality of life of the whole family changes. For this reason the first communication of chronic disease is very important and the task of the pediatrician should be to provide a positive message to help the family in facing the difficulty of this new challenge. The bronchial asthma is the most common chronic disease worldwide. The incidence, the prevalence, and the mortality of the disease have increased in children over the past decades. These trends are particularly marked above all in preschool children. The success reached by Pediatricians is closely related to the compliance and the implementation of the therapy followed by the little patient and his family. With this regard authors, in this review, focus on the illustration of several strategies, based on the pediatrician’ skills and medicine documents, that can be used for the improvement of communication among pedia- trician-family and child, never forgetting the hu- man aspect of the same doctor, that should con- ciliate with the scientific knowledge in the taking care of a specific chronic disease.
基金Supported by the National Natural Science Foun-dation of China (60374008 ,60501022)
文摘The delay fault induced by cross-talk effect is one of the difficult problems in the fault diagnosis of digital circuit. An intelligent fault diagnosis based on IDDT testing and support vector machines (SVM) classifier was proposed in this paper. Firstly, the fault model induced by cross-talk effect and the IDDT testing method were analyzed, and then a delay fault localization method based on SVM was presented. The fault features of the sampled signals were extracted by wavelet packet decomposition and served as input parameters of SVM classifier to classify the different fault types. The simulation results illustrate that the method presented is accurate and effective, reaches a high diagnosis rate above 95%.
基金supported by the National Natural Science Foundation of China (No. 30570782).
文摘Objective: BCR/ABL oncoprotein-expression is associated with uncontrolled cell growth. Sphingosine kinase 1 (SPK1) regulates the production of sphingosine 1-phosphate (S1P), a key lipid signal molecular in cell proliferation and survival. The objective of this study was to elucidate the roles of S1P and its receptors in bcr/abl positive chronic myeloid leukemia (CML) cells. Methods: The expressions of SIP receptors: S1P1, S1P2 and S1P3 in CML cells were detected by RT-PCR. SPK1 expression, activity and extracellular S1P were determined in ECV304 and HL-60 cells which were transfected with bcr/abl gene. To elucidate the relationship between the BCR/ABL, ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase), SPK/S 1P and S 1P/S 1 P2 signal pathways, bcr/abl positive CML cell line K562 was treated with STI571, PD98059, N,N-dimethyl sphingosine (DMS) and JTE-013. Results: Retrovirus-mediated overexpression of bcr/abl gene in ECV304 and HL-60 cells resulted in upregulation of the expression, activity of SPK1 and increase of the secretion of SIP, whereas treatment of STI571 and PD98059 decreased the BCR/ABL-induced S1P secretion. Treatment of DMS reduced S1P secretion and P42/44MAPK phosphorylation. S1P2-selective antagonist JTE-013 could also decrease P42/44MAPK phosphorylation. Conclusion: These results suggest that BCR/ABL up-regulates extracellular sphingosine 1-phosphate through sphingosine kinase 1 and there is cross-talk between SPK1/S1P/S1P2 and P42/44MAPK in bcr/abl positive CML cells.
基金supported by the Agence Nationale de la Recherche,France(ANR)through the TROPIC project(ANR-19CE05-0026)。
文摘This review addresses the growing interest for potassium-ion full-cells(KIFCs)in view of the transition from potassium-ion half-cells(KIHCs)toward commercial K-ion batteries(KIBs).It focuses on the key parameters of KIFCs such as the electrode/electrolyte interfaces challenge,major barriers,and recent advancements in KIFCs.The strategies for enhancing KIFC performance,including interfaces co ntrol,electrolyte optimization,electrodes capacity ratio,electrode material screening and electrode design,are discussed.The review highlights the need to evaluate KIBs in full-cell configurations as half-cell results are strongly impacted by the K metal reactivity.It also emphasizes the importance of understanding solid electrolyte interphase(SEI)formation in KIFCs and explores promising nonaqueous as well as quasiand all-solid-state electrolytes options.This review thus paves the way for practical,cost-effective,and scalable KIBs as energy storage systems by offering insights and guidance for future research.
基金Supported by National Natural Science Foundation of China,No.32200944“Qing Lan”Project of Jiangsu Provincethe Jiangsu Research Institute of Sports Science Foundation,No.BM-2023-03.
文摘BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle.However,despite of the decades of research,whether macrophages infiltration and polarization in skeletal muscle under high glucose(HG)milieus results in the development of IR is yet to be elucidated.C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation.Further exploration of macrophages'role in myoblasts IR and the dynamics of their infiltration and polarization is warranted.AIM To evaluate interactions between myoblasts and macrophages under HG,and its effects on inflammation and IR in skeletal muscle.METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining.Then,we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus.The effects of myoblasts on macrophages were explored through morphological observation,CCK-8 assay,Flow Cytometry,and enzyme-linked immunosorbent assay.The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation,CCK-8 assay,Immunofluorescence,and 2-NBDG assay.RESULTS The F4/80 and co-localization of F4/80 and CD86 increased,and the myofiber size decreased in IR group(P<0.01,g=6.26).Compared to Mc group,F4/80+CD86+CD206-cells,tumor necrosis factor-α(TNFα),inerleukin-1β(IL-1β)and IL-6 decreased,and IL-10 increased in McM group(P<0.01,g>0.8).In McM+HG group,F4/80+CD86+CD206-cells,monocyte chemoattractant protein 1,TNFα,IL-1βand IL-6 were increased,and F4/80+CD206+CD86-cells and IL-10 were decreased compared with Mc+HG group and McM group(P<0.01,g>0.8).Compered to M group,myotube area,myotube number and E-MHC were increased in MMc group(P<0.01,g>0.8).In MMc+HG group,myotube area,myotube number,E-MHC,GLUT4 and glucose uptake were decreased compared with M+HG group and MMc group(P<0.01,g>0.8).CONCLUSION Interactions between myoblasts and macrophages under HG milieus results in inflammation and IR,which support that the macrophage may serve as a promising therapeutic target for skeletal muscle atrophy and IR.
基金partially supported by the grants from National Natural Science Foundation of China (NSFC)(No.30971743)the National High Technology Research and Development Program of China(863 Program) (No.2008AA10Z125)the Fundamental Research Funds for the Central Universities
文摘Plant development is a complex process influenced by exogenous and endogenous elements.A series of postembryonic developmental events is involved to form the final architecture and contend with the changing environment.MicroRNA(miRNA) is one of endogenous non-coding RNAs,which plays an important role in plant developmental regulation.In this review,we summarized 34 miRNA families that are closely associated with plant development.Among these families,nine are expressed only in specific organs,whereas 20 families are expressed in at least two different organs.It is known that some miRNAs are expressed across most processes of plant growth,while some appear only at particular developmental stages or under special environmental conditions such as drought,waterlogging and short-day time.These miRNAs execute their diverse functions by regulating developmental gene expression levels,interacting with phytohormone signaling response,participating in the biogenesis of ta-siRNAs and affecting the production of miRNAs.
基金supported by the National Basic Research Program of China (Grant Nos. 2011CB504506 and 2007CB512306)the National Natural Science Foundation of China (Grant Nos. 30970977 and 30730041)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KSCX1-YW-R-36)
文摘Neuronal ion channels of different types often do not function independently but will inhibit or potentiate the activity of other types of channels,a process called cross-talk.The N-methyl-D-aspartate receptor (NMDA receptor) and the γ-aminobutyric acid type A receptor (GABAA receptor) are important excitatory and inhibitory receptors in the central nervous system,respectively.Currently,cross-talk between the NMDA receptor and the GABAA receptor,particularly in the central auditory system,is not well understood.In the present study,we investigated functional interactions between the NMDA receptor and the GABAA receptor using whole-cell patch-clamp techniques in cultured neurons from the inferior colliculus,which is an important nucleus in the central auditory system.We found that the currents induced by aspartate at 100 μmol L-1 were suppressed by the pre-perfusion of GABA at 100 μmol L-1,indicating cross-inhibition of NMDA receptors by activation of GABAA receptors.Moreover,we found that the currents induced by GABA at 100 μmol L-1 (IGABA) were not suppressed by the pre-perfusion of 100 μmol L-1 aspartate,but those induced by GABA at 3 μmol L-1 were suppressed,indicating concentration-dependent cross-inhibition of GABAA receptors by activation of NMDA receptors.In addition,inhibition of IGABA by aspartate was not affected by blockade of voltage-dependent Ca2+ channels with CdCl2 in a solution that contained Ca2+,however,CdCl2 effectively attenuated the inhibition of IGABA by aspartate when it was perfused in a solution that contained Ba2+ instead of Ca2+ or a solution that contained Ca2+ and 10 mmol L-1 BAPTA,a membrane-permeable Ca2+ chelator,suggesting that this inhibition is mediated by Ca2+ influx through NMDA receptors,rather than voltage-dependent Ca2+ channels.Finally,KN-62,a potent inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII),reduced the inhibition of IGABA by aspartate,indicating the involvement of CaMKII in this cross-inhibition.Our study demonstrates a functional interaction between NMDA and GABAA receptors in the inferior colliculus of rats.The presence of cross-talk between these receptors suggests that the mechanisms underlying information processing in the central auditory system may be more complex than previously believed.
基金This work was supported by the grants from the National Natural Science Foundation of China (No. 30572356) and the Natural Science Foundation of the Education Department of Anhui Province (No. KJ2008B295).
文摘Background Signaling pathways that regulate the production of cytokines and destructive enzymes have been implicated in rheumatoid arthritis (RA) pathogenesis. There are co-relations between signaling pathways. The aim of this study was to investigate interactions and cross-talks between MEK1/2-extracellular signal-related kinase (ERK1/2) signaling and G protein-couple signaling in synoviocytes of collagen-induced arthritis (CIA) rats by the stimulation of interleukin-1 (IL-1), U0126, isoprenaline hydrochloride and aminophyline respectively. Methods Twenty Sprague-Dawley (SD) rats were induced by chicken type II collagen. Synoviocytes of CIA rats were isolated and cultured. The expressions of Gi, phosphorylated MEK1/2 (p-MEK1/2) and phosphorylated ERK1/2 (p-ERK1/2) were detected by Western blotting, cAMP level and protein kinase A (PKA) activity were measured by radioimmunoassay and kinase-glo luminescent kinase assay respectively. Results There was remarkable inflammation in CIA rats accompanied by swelling paws, hyperplastic synovium, pannus and cartilage erosion, cAMP level and PKA activity of synoviocytes decreased. Gi, p-ERK1/2 and p-MEK1/2 increased, rlL-la improved the expression of Gi, p-ERK1/2 and p-MEK1/2, cAMP and PKA increased with stimulation of rlL-1α. U0126 inhibited Gi, cAMP and PKA of synoviocytes stimulated by rlL-la. Isoprenaline hydrochloride enhanced Gi, cAMP and PKA, but had no effects on p-MEK1/2 and p-ERK1/2. Aminophyline increased cAMP and PKA, but inhibited p-MEK1/2 and p-ERK1/2. Conclusions Mitogen-activated protein kinases (MAPKs) and G protein-couple signaling are associated with synovitis. There are cross talks between MAPKs and G protein-couple signaling. The two signaling pathways represent potential therapeutic targets for RA.