We investigate the Hall effects of quadratic band crossing(QBC) fermions in a square optical lattice with spin–orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical ro...We investigate the Hall effects of quadratic band crossing(QBC) fermions in a square optical lattice with spin–orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical roles in the systems,which can drive a topological transition from spin Hall phases to anomalous Hall phase with nonvanishing(spin) Chern numbers. Due to the interplay among the orbital Zeeman term, spin–orbit coupling, and the shaking, the phase diagram of the system exhibits rich phases, which are characterized by Chern number.展开更多
The evolution of polarization singularities supported in a one-dimensional periodic plasmonic system is studied.The lateral inversion symmetry of the system,which breaks the in-plane inversion symmetry and up-down mir...The evolution of polarization singularities supported in a one-dimensional periodic plasmonic system is studied.The lateral inversion symmetry of the system,which breaks the in-plane inversion symmetry and up-down mirror symmetry simultaneously,yields abundant polarization states.A complete evolution process with geometry for the polarization states is traced.In the evolution,circularly polarized points(C points)can stem from 3 different processes.In addition to the previously reported processes occurring in an isolated band,a new type of C point appearing in two bands simultaneously due to the avoided band crossing,is observed.Unlike the dielectric system with a similar structure which only supports at-Γbound states in the continuum(BICs),accidental BICs off theΓpoint are realized in this plasmonic system.This work provides a new scheme of polarization manipulation for the plasmonic systems.展开更多
We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by va...We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.展开更多
According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
We systematically studied the evaporation residue cross sections of ^(48)Ca-induced reactions on lanthanide and actinide target nuclei under the Dinuclear System(DNS)model framework to check the reliability and applic...We systematically studied the evaporation residue cross sections of ^(48)Ca-induced reactions on lanthanide and actinide target nuclei under the Dinuclear System(DNS)model framework to check the reliability and applicability of the model.To produce new proton-rich Fl and Lv isotopes through hot fusion reactions in the superheavy element region with Z≥104,we utilized the reactions ^(48)Ca+^(236,238,239) Pu and ^(48)Ca+^(242,243,244,250) Cm.However,owing to the detection limit of available equipment(0.1 pb),only 283Fl and 287−289Lv,which have the maximum evaporation residue cross section values of 0.149,0.130,9.522,and 0.309 pb,respectively,can be produced.Furthermore,to produce neutron-deficient isotopes of actinides near the proton drip line with Z=93−100,we attempted to generate the new isotopes(224−227Pu,228−232,237Cm)using the reactions ^(48)Ca+180,182,183 W and ^(48)Ca+^(184,186,187,192) Os.The maximum evaporation residue cross section values are 0.07,0.06,0.26,and 0.30 nb for the former set of reactions,and 1.96 pb,5.73 pb,12.16 pb,19.39 pb,54.79 pb,and 6.45 nb for the latter,respectively.These results are expected to provide new information for the future synthesis of unknown neutron-deficient isotopes.展开更多
This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with...This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.展开更多
First-principles calculations are applied for investigating influence of electron donating ability of donor groups in eight thermally activated delayed fluorescence(TADF) molecules on their geometrical structures an...First-principles calculations are applied for investigating influence of electron donating ability of donor groups in eight thermally activated delayed fluorescence(TADF) molecules on their geometrical structures and transition properties as well as reverse intersystem crossing(RISC) processes. Results show that the diphenylamine substitution in the donor part can slightly change the bond angle but decrease bond length between donor and acceptor unit except for the lowest triplet state(Ti) of carbazole-xanthone molecule. As the electron donating ability of donor groups is increased, the overlap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) is decreased. As the diphenylamine groups are added in donor part, the delocalization of HOMO is enlarged,which brings a decreased energy gap(△ES1-T1) between the lowest singlet excited state(S1)and T1 state. Furthermore, with the calculated spin-orbit coupling coefficient(HSO), one finds that the larger value of ■ is, the faster the RISC is. The results show that all investigated molecules are promising candidates as TADF molecules. Overall, a wise molecular design strategy for TADF molecules,in which a small △ES1-T1 can be achieved by enlarging the delocalization of frontier molecular orbitals with large separation between HOMO and LUMO, is proposed.展开更多
Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the orig...Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the origin of ultra-long L is still unclear in nature. In some photoelectric materials, reverse intersystem crossing (RISC) from the triplet to the singlet state can enhance the quantum yield of pho- toluminescence greatly. In this study, our theoretical investigation indicated that the energy difference △E_st between the singlet state and the triplet state of CH_3NH_3Pbl_3 was less than 0.1 eV, which represents one crucial prerequisite for the occurrence of RISC. Meanwhile, the experimental results showed that the photoluminescence lifetime increased with the increasing temperature, a typical feature of RISC. Based on this study, we put forward the hypothesis that the ultra-long lifetime of excitons in organic-inorganic halide perovskite might be caused by the RISC process. This may provide a new insight into the important photophysical properties of such novel photovoltaic materials.展开更多
We consider in this paper the boundary value problems of nonlinear systems the form εY″=F(t,Y,Y′,ε), -1<t<1, Y(-1,ε)=A(ε), Y(1,ε)=B(ε). Supoosing some or all of the components of F , that is, ...We consider in this paper the boundary value problems of nonlinear systems the form εY″=F(t,Y,Y′,ε), -1<t<1, Y(-1,ε)=A(ε), Y(1,ε)=B(ε). Supoosing some or all of the components of F , that is, f i satisfy 2 f y′ 2 i t =0 =0, we say that F possesses a generalized turning point at t =0. Our goal is to give sufficient conditions for the existence of solution of the problems and to study the asymptotic behavior of the solution when F possesses a generalized turning point at t =0. We mainly discuss regular singular crossings.展开更多
There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional le...There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional level crossing control system is characterized by the use of two types of electronic train detectors;one detects a train approaching to a level crossing section and the other then detects the train having left the level crossing.By contrast,closed-loop level crossing control systems in which level crossing control equipment and train-borne equipment communicate with each other have been advocated and are expected to serve as an effective solution to the abovementioned issue.This paper describes the following three types of closed-loop level crossing control systems:decentralized level crossing control system,fully-centralized comprehensive level crossing control system and fully-centralized individual level crossing control system.This paper then assesses the safety of these systems in comparison to the conventional level crossing control system.For the purpose of the assessment of their safety,a new accident analysis model called STAMP(systems theoretic accident model and processes)that is suitable for software intensive systems is used to clarify the advantage of the proposed three types of level crossing control systems in terms of safety.展开更多
In this paper,we study the asymptotic relation between the first crossing point and the last exit time for Gaussian order statistics which are generated by stationary weakly and strongly dependent Gaussian sequences.I...In this paper,we study the asymptotic relation between the first crossing point and the last exit time for Gaussian order statistics which are generated by stationary weakly and strongly dependent Gaussian sequences.It is shown that the first crossing point and the last exit time are asymptotically independent and dependent for weakly and strongly dependent cases,respectively.The asymptotic relations between the first crossing point and the last exit time for stationary weakly and strongly dependent Gaussian sequences are also obtained.展开更多
Head and neck squamous cell cancer(HNSCC)is a leading global malignancy.Every year,More than 830000 people are diagnosed with HNSCC globally,with more than 430000 fatalities.HNSCC is a deadly diverse malignancy with m...Head and neck squamous cell cancer(HNSCC)is a leading global malignancy.Every year,More than 830000 people are diagnosed with HNSCC globally,with more than 430000 fatalities.HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics.It originates from the squamous epithelium of the oral cavity,oropharynx,nasopharynx,larynx,and hypopharynx.The most frequently impacted regions are the tongue and larynx.Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC.Despite the advances in our knowledge,the improved survival rate of HNSCC patients over the last 40 years has been limited.Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods.These results indicate a need to identify more genetic factors underlying this complex disease,which can be better used in early detection and prevention strategies.The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors.In this report,we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes(e.g.Smad 4 and P53 genes)to identify genetic factors affecting the development of this complex disease using genome-wide association studies,epigenetics,micro RNA,long noncoding RNA,lnc RNA,histone modifications,methylation,phosphorylation,and proteomics.展开更多
A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in th...A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave(EW)absorbents to achieve high-level performance.The heterointerface construction is crucial to the improvement of a...The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave(EW)absorbents to achieve high-level performance.The heterointerface construction is crucial to the improvement of absorption ability.Herein,a series of ultralight composites with rational heterointerfaces(Co/ZnO@N-doped C/layer-stacked C,MSC)is fabricated by calcination with ration-al construction of sugarcane and CoZn-zeolitic imidazolate framework(ZIF).The components and structures of as-prepared composites were investigated,and their electromagnetic parameters could be adjusted by the content of CoZn-ZIFs.All composites possess excellent EW absorption performance,especially MSC-3.The optimal minimum reflection loss and effective absorption band of MSC-3 can reach−42 dB and 7.28 GHz at the thickness of only 1.6 mm with 20wt%filler loading.This excellent performance is attributed to the syner-gistic effect of dielectric loss stemming from the multiple heterointerfaces and magnetic loss induced by magnetic single Co.The sugar-cane-derived layer-stacked carbon has formed consecutive conductive networks and has further dissipated the electromagnetic energy through multiple reflection and conduction losses.Moreover,the simulated radar cross section(RCS)technology manifests that MSC-3 possesses outstanding EW attenuation capacity under realistic far-field conditions.This study provides a strategy for building efficient ab-sorbents based on biomass.展开更多
Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbid...Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.展开更多
Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through co...Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively.展开更多
Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement o...Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.展开更多
Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al re...Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11504095)。
文摘We investigate the Hall effects of quadratic band crossing(QBC) fermions in a square optical lattice with spin–orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical roles in the systems,which can drive a topological transition from spin Hall phases to anomalous Hall phase with nonvanishing(spin) Chern numbers. Due to the interplay among the orbital Zeeman term, spin–orbit coupling, and the shaking, the phase diagram of the system exhibits rich phases, which are characterized by Chern number.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074049 and 12047564)the Fundamental Research Funds for the Central Universities,China (Grant Nos.2020CDJQY-Z006 and 2020CDJQYZ003)the Research Foundation of SWUST (Grant No.21zx7141)。
文摘The evolution of polarization singularities supported in a one-dimensional periodic plasmonic system is studied.The lateral inversion symmetry of the system,which breaks the in-plane inversion symmetry and up-down mirror symmetry simultaneously,yields abundant polarization states.A complete evolution process with geometry for the polarization states is traced.In the evolution,circularly polarized points(C points)can stem from 3 different processes.In addition to the previously reported processes occurring in an isolated band,a new type of C point appearing in two bands simultaneously due to the avoided band crossing,is observed.Unlike the dielectric system with a similar structure which only supports at-Γbound states in the continuum(BICs),accidental BICs off theΓpoint are realized in this plasmonic system.This work provides a new scheme of polarization manipulation for the plasmonic systems.
基金supported by the National Natural Science Foundation of China(Grant No.12004049)the Fund of State Key Laboratory of IPOC(BUPT)(Grant Nos.600119525 and 505019124).
文摘We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金National Natural Science Foundation of China(Nos.12175064 and U2167203)Hunan Outstanding Youth Science Foundation(No.2022JJ10031).
文摘We systematically studied the evaporation residue cross sections of ^(48)Ca-induced reactions on lanthanide and actinide target nuclei under the Dinuclear System(DNS)model framework to check the reliability and applicability of the model.To produce new proton-rich Fl and Lv isotopes through hot fusion reactions in the superheavy element region with Z≥104,we utilized the reactions ^(48)Ca+^(236,238,239) Pu and ^(48)Ca+^(242,243,244,250) Cm.However,owing to the detection limit of available equipment(0.1 pb),only 283Fl and 287−289Lv,which have the maximum evaporation residue cross section values of 0.149,0.130,9.522,and 0.309 pb,respectively,can be produced.Furthermore,to produce neutron-deficient isotopes of actinides near the proton drip line with Z=93−100,we attempted to generate the new isotopes(224−227Pu,228−232,237Cm)using the reactions ^(48)Ca+180,182,183 W and ^(48)Ca+^(184,186,187,192) Os.The maximum evaporation residue cross section values are 0.07,0.06,0.26,and 0.30 nb for the former set of reactions,and 1.96 pb,5.73 pb,12.16 pb,19.39 pb,54.79 pb,and 6.45 nb for the latter,respectively.These results are expected to provide new information for the future synthesis of unknown neutron-deficient isotopes.
文摘This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.
基金This work was supported by the National Natural Science Foundation of China(No.11374195 and No.21403133),the Taishan Scholar Project of Shandong Province,the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2014CL001),and the General Financial Grant from the China Postdoctoral Science Foundation(No.2014M560571).
文摘First-principles calculations are applied for investigating influence of electron donating ability of donor groups in eight thermally activated delayed fluorescence(TADF) molecules on their geometrical structures and transition properties as well as reverse intersystem crossing(RISC) processes. Results show that the diphenylamine substitution in the donor part can slightly change the bond angle but decrease bond length between donor and acceptor unit except for the lowest triplet state(Ti) of carbazole-xanthone molecule. As the electron donating ability of donor groups is increased, the overlap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) is decreased. As the diphenylamine groups are added in donor part, the delocalization of HOMO is enlarged,which brings a decreased energy gap(△ES1-T1) between the lowest singlet excited state(S1)and T1 state. Furthermore, with the calculated spin-orbit coupling coefficient(HSO), one finds that the larger value of ■ is, the faster the RISC is. The results show that all investigated molecules are promising candidates as TADF molecules. Overall, a wise molecular design strategy for TADF molecules,in which a small △ES1-T1 can be achieved by enlarging the delocalization of frontier molecular orbitals with large separation between HOMO and LUMO, is proposed.
基金The financial supports of the National Natural Science Foundation of China (grant nos. 21373042, 21677029 and 51402036)the Fundamental Research Funds for the Central Universities (grant no. DUT15YQ109)
文摘Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the origin of ultra-long L is still unclear in nature. In some photoelectric materials, reverse intersystem crossing (RISC) from the triplet to the singlet state can enhance the quantum yield of pho- toluminescence greatly. In this study, our theoretical investigation indicated that the energy difference △E_st between the singlet state and the triplet state of CH_3NH_3Pbl_3 was less than 0.1 eV, which represents one crucial prerequisite for the occurrence of RISC. Meanwhile, the experimental results showed that the photoluminescence lifetime increased with the increasing temperature, a typical feature of RISC. Based on this study, we put forward the hypothesis that the ultra-long lifetime of excitons in organic-inorganic halide perovskite might be caused by the RISC process. This may provide a new insight into the important photophysical properties of such novel photovoltaic materials.
文摘We consider in this paper the boundary value problems of nonlinear systems the form εY″=F(t,Y,Y′,ε), -1<t<1, Y(-1,ε)=A(ε), Y(1,ε)=B(ε). Supoosing some or all of the components of F , that is, f i satisfy 2 f y′ 2 i t =0 =0, we say that F possesses a generalized turning point at t =0. Our goal is to give sufficient conditions for the existence of solution of the problems and to study the asymptotic behavior of the solution when F possesses a generalized turning point at t =0. We mainly discuss regular singular crossings.
文摘There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional level crossing control system is characterized by the use of two types of electronic train detectors;one detects a train approaching to a level crossing section and the other then detects the train having left the level crossing.By contrast,closed-loop level crossing control systems in which level crossing control equipment and train-borne equipment communicate with each other have been advocated and are expected to serve as an effective solution to the abovementioned issue.This paper describes the following three types of closed-loop level crossing control systems:decentralized level crossing control system,fully-centralized comprehensive level crossing control system and fully-centralized individual level crossing control system.This paper then assesses the safety of these systems in comparison to the conventional level crossing control system.For the purpose of the assessment of their safety,a new accident analysis model called STAMP(systems theoretic accident model and processes)that is suitable for software intensive systems is used to clarify the advantage of the proposed three types of level crossing control systems in terms of safety.
基金Supported by the National Natural Science Foundation of China(11501250)Zhejiang Provincial Natural Science Foundation of China(LY18A010020)Innovation of Jiaxing City:a program to support the talented persons。
文摘In this paper,we study the asymptotic relation between the first crossing point and the last exit time for Gaussian order statistics which are generated by stationary weakly and strongly dependent Gaussian sequences.It is shown that the first crossing point and the last exit time are asymptotically independent and dependent for weakly and strongly dependent cases,respectively.The asymptotic relations between the first crossing point and the last exit time for stationary weakly and strongly dependent Gaussian sequences are also obtained.
基金supported by a core fund from Tel Aviv University and the Department of Oral and Maxillofacial Surgery,Baruch Padeh Medical Center,Poriya,Israel。
文摘Head and neck squamous cell cancer(HNSCC)is a leading global malignancy.Every year,More than 830000 people are diagnosed with HNSCC globally,with more than 430000 fatalities.HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics.It originates from the squamous epithelium of the oral cavity,oropharynx,nasopharynx,larynx,and hypopharynx.The most frequently impacted regions are the tongue and larynx.Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC.Despite the advances in our knowledge,the improved survival rate of HNSCC patients over the last 40 years has been limited.Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods.These results indicate a need to identify more genetic factors underlying this complex disease,which can be better used in early detection and prevention strategies.The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors.In this report,we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes(e.g.Smad 4 and P53 genes)to identify genetic factors affecting the development of this complex disease using genome-wide association studies,epigenetics,micro RNA,long noncoding RNA,lnc RNA,histone modifications,methylation,phosphorylation,and proteomics.
文摘A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.
基金supported by the National-Natural Science Foundation of China(Nos.52302362,52377026,and 52301192)Doctorial Foundation of Henan University of Technology,China(Nos.2021BS030 and 2020BS030)+3 种基金Key Scientific and Technological Research Projects in Henan Province,China(Nos.222102240091 and 232102240038)Natural Science Foundation from the Department of Science and Technology of Henan Province,China(No.232300420309)Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)“Sanqin Scholars”Innovation Teams Project of Shaanxi Province,China(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave(EW)absorbents to achieve high-level performance.The heterointerface construction is crucial to the improvement of absorption ability.Herein,a series of ultralight composites with rational heterointerfaces(Co/ZnO@N-doped C/layer-stacked C,MSC)is fabricated by calcination with ration-al construction of sugarcane and CoZn-zeolitic imidazolate framework(ZIF).The components and structures of as-prepared composites were investigated,and their electromagnetic parameters could be adjusted by the content of CoZn-ZIFs.All composites possess excellent EW absorption performance,especially MSC-3.The optimal minimum reflection loss and effective absorption band of MSC-3 can reach−42 dB and 7.28 GHz at the thickness of only 1.6 mm with 20wt%filler loading.This excellent performance is attributed to the syner-gistic effect of dielectric loss stemming from the multiple heterointerfaces and magnetic loss induced by magnetic single Co.The sugar-cane-derived layer-stacked carbon has formed consecutive conductive networks and has further dissipated the electromagnetic energy through multiple reflection and conduction losses.Moreover,the simulated radar cross section(RCS)technology manifests that MSC-3 possesses outstanding EW attenuation capacity under realistic far-field conditions.This study provides a strategy for building efficient ab-sorbents based on biomass.
基金supported by the National Key R&D Program of China(grant no.2020YFA0709900)the National Natural Science Foundation of China(grant nos.21971041,22201042,22027805,62134003,and 22104016)+2 种基金the Natural Science Foundation of Fujian Province(grant nos.2020J01447,2022J06008,and 2022J0121)the Research Foundation of Education Bureau of Fujian Province(grant no.JAT210001)the Fuzhou University Testing Fund of Precious Apparatus(grant no.2022T001).
文摘Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.
基金the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004).
文摘Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively.
文摘Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.
基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK 2022-04)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike,ZY22096024)+1 种基金the National Natural Science Foundation of China(12065003)Guangxi Key R&D Project(2023AB07029).
文摘Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.