As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(...A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(2)(L)_(2)(HL)_(2)(NCS)_(2)]_(2)·2CH_(3)OH(2)have been synthesized by the coordination reactions of Zn(OAc)_(2)·2H_(2)O or ZnCl_(2)with(H_(2)L)SCN under reflux conditions.Elemental analyses and single⁃crystal X⁃ray diffraction have con⁃firmed the structures of the synthesized compounds.The(H_(2)L)SCN ligand and complex 1 pertain to the triclinic sys⁃tem with space group P1,while complex 2 belongs to the monoclinic system with space group P2_(1)/n.Additionally,the antibacterial activities of the compounds were evaluated in vitro using the agar diffusion method against the bac⁃terial strains(Candida albicans,Staphylococcus aureus,and Escherichia coli).The results showed that the ligand exhibited relatively good antibacterial activities against the bacteria,and the complexes possessed stronger antibac⁃terial activities against the same bacteria than the free ligand.CCDC:2190252,(H2L)SCN;2190253,1;2190256,2.展开更多
Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmissi...Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.展开更多
Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmeth...Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.展开更多
Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent ma...Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.展开更多
Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(dipheny...Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(diphenylphosphino)methyl]-1,4-benzenediamin}were synthesized using a one-pot method.X-ray crystallography was used to elucidate their crystal structures and photophysical properties.A series of characterization tests including elemental analysis,NMR,FT-IR,UV-Vis absorption spectroscopy,fluorescence spectroscopy,thermal gravimetric analysis and terahertz time-domain spectroscopy(THz-TDS)were used to further investigate their properties.The results show that complex 1 structure is mononuclear containing two solvent molecules per unit cell,while complex 2 structure is binuclear containing two metal centers per unit cell.According to photophysical properties and density functional theory(DFT)calculations,their luminescence properties can be attributed to metal-to-ligand charge transfer(MLCT).Both complexes have a unique stability,which is confirmed by thermal gravimetric analysis.展开更多
The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structur...The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structure,thermal and mechanical properties,and crystallization behavior changes were investigated by nuclear magnetic resonance spectrometer,Fourier-transform infrared spectro-photometer,X-ray diffractometer,differential scanning calorimetry and field emission scanning electron microscope measurements.The change of Q^(n)in glass structures reveals the glass network connectivity decreases due to the increasing content of Fe_(2)O_(3)addition,resulting in the increasing of non-bridging number in glass structure.The glass densities slightly rise from 2.644 to 2.681 g/cm^(3),while Vickers’s hardness increases at first,from 6.469 to 6.901 GPa,then slightly drops to 6.745 GPa,with Fe_(2)O_(3)content increase.There is almost no thermal expansion coefficient change from different Fe_(2)O_(3)content.The glass transmittance in visible range gradually decreases with higher Fe_(2)O_(3)content,resulting from the strong absorption of Fe^(2+)and Fe^(3+)ions.The calculated activation energy from thermal analysis results first decreases from 282.70 to 231.18 kJ/mol,and then increases to 244.02 kJ/mol,with the Fe_(2)O_(3)content increasing from 0.10wt%to 1.30wt%.Meanwhile,the maximum Avrami constant of 2.33 means the CAS glasses exhibit two-dimensional crystallization.All of the CAS glass-ceramics samples contain main crystal phase of anorthite,the microstructure appears lamellar and columnar crystals.展开更多
Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of ...Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of achieving high thermal conductivity(k),desirable dielectric performance,and robust thermomechanical properties simultaneously.Liquid crystal epoxy(LCE)emerges as a unique epoxy,exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures.This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy,while demonstrating a prominently enhanced k.As such,liquid crystal epoxy materials represent a promising solution for thermal management,with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment.This article provides a comprehensive review on recent advances in liquid crystal epoxy,emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement,organized mesoscopic domain,k,and relevant physical properties.The impacts of LC units and curing agents on the development of ordered structure are discussed,alongside the consequent effects on the k,dielectric,thermal,and other properties.External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated.Finally,potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed.展开更多
The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The...The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.展开更多
In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfoni...In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.展开更多
A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietve...A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietveld refinement.The crystal field energy level splitting of Yb^(3+)in GdScO_(3) is determined by employing the absorption and photoluminescence spectra at 8 K.Only ^(2)F_(7/2)(4)is far from the ground state ^(2)F_(7/2)(1)by 710 cm-1 among the crystal field energy levels split from ^(2)F_(7/2),so it is more easier to realize the laser operation of ^(2)F5/2(1)^(2)F_(7/2)(4)with wavelength 1060 nm.The spin–orbit coupling parameters and intrinsic crystal field parameters(CFPs).The intrinsic crystal field parameters¯B k(k=2,4,6)of the crystal were fitted by the superposition model.The CFPs evaluated with¯Bk and coordination factor are taken as the initial parameters to fit the crystal field energy levels of the crystal,and the crystal field parameters Bk q are obtained finally with the root-mean-square deviation 9 cm-1.It is suggested that the ligand point charge,covalency and overlap interaction are slightly weaker than charge interpenetration and coulomb exchange interaction for Yb^(3+)in GdScO_(3).The obtained Hamiltonian parameters can be used to calculate crystal field energy levels and wave functions of Yb:GdScO_(3) to analyze the mechanism of the luminescence or laser.展开更多
In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical mod...In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.展开更多
The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal s...The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal stability and earliest stage evolution of the local atomic clusters show no strong correlation with their initial short-range orders,and this leads to an observation of a novel symmetry convergence phenomenon,which can be understood as an atomic structure manifestation of the ergodicity.Furthermore,in our system we have quantitatively proved that the crucial factor for the thermal stability against crystallization exhibited by the metallic glass is not the total amount of icosahedral clusters,but the degree of global connectivity among them.展开更多
In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the s...In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.展开更多
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on...Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
文摘A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(2)(L)_(2)(HL)_(2)(NCS)_(2)]_(2)·2CH_(3)OH(2)have been synthesized by the coordination reactions of Zn(OAc)_(2)·2H_(2)O or ZnCl_(2)with(H_(2)L)SCN under reflux conditions.Elemental analyses and single⁃crystal X⁃ray diffraction have con⁃firmed the structures of the synthesized compounds.The(H_(2)L)SCN ligand and complex 1 pertain to the triclinic sys⁃tem with space group P1,while complex 2 belongs to the monoclinic system with space group P2_(1)/n.Additionally,the antibacterial activities of the compounds were evaluated in vitro using the agar diffusion method against the bac⁃terial strains(Candida albicans,Staphylococcus aureus,and Escherichia coli).The results showed that the ligand exhibited relatively good antibacterial activities against the bacteria,and the complexes possessed stronger antibac⁃terial activities against the same bacteria than the free ligand.CCDC:2190252,(H2L)SCN;2190253,1;2190256,2.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074409 and 12374021)。
文摘Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.
文摘Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.
文摘Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.
基金supported by the Key Project of Science and Technology Plan of Beijing Education Commission(KZ20231002808)。
文摘Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(diphenylphosphino)methyl]-1,4-benzenediamin}were synthesized using a one-pot method.X-ray crystallography was used to elucidate their crystal structures and photophysical properties.A series of characterization tests including elemental analysis,NMR,FT-IR,UV-Vis absorption spectroscopy,fluorescence spectroscopy,thermal gravimetric analysis and terahertz time-domain spectroscopy(THz-TDS)were used to further investigate their properties.The results show that complex 1 structure is mononuclear containing two solvent molecules per unit cell,while complex 2 structure is binuclear containing two metal centers per unit cell.According to photophysical properties and density functional theory(DFT)calculations,their luminescence properties can be attributed to metal-to-ligand charge transfer(MLCT).Both complexes have a unique stability,which is confirmed by thermal gravimetric analysis.
基金Funded by the Key Research and Development Program of Han Nan province(No.ZDYF2021GXJS027)the Project of Sanya Yazhou Bay Science and Technology City(No.SCKJJYRC-2022-44)the Shenzhen Virtual University Park(SZVUP)Free Exploration Basic Research Project(No.2021Szvup107)。
文摘The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structure,thermal and mechanical properties,and crystallization behavior changes were investigated by nuclear magnetic resonance spectrometer,Fourier-transform infrared spectro-photometer,X-ray diffractometer,differential scanning calorimetry and field emission scanning electron microscope measurements.The change of Q^(n)in glass structures reveals the glass network connectivity decreases due to the increasing content of Fe_(2)O_(3)addition,resulting in the increasing of non-bridging number in glass structure.The glass densities slightly rise from 2.644 to 2.681 g/cm^(3),while Vickers’s hardness increases at first,from 6.469 to 6.901 GPa,then slightly drops to 6.745 GPa,with Fe_(2)O_(3)content increase.There is almost no thermal expansion coefficient change from different Fe_(2)O_(3)content.The glass transmittance in visible range gradually decreases with higher Fe_(2)O_(3)content,resulting from the strong absorption of Fe^(2+)and Fe^(3+)ions.The calculated activation energy from thermal analysis results first decreases from 282.70 to 231.18 kJ/mol,and then increases to 244.02 kJ/mol,with the Fe_(2)O_(3)content increasing from 0.10wt%to 1.30wt%.Meanwhile,the maximum Avrami constant of 2.33 means the CAS glasses exhibit two-dimensional crystallization.All of the CAS glass-ceramics samples contain main crystal phase of anorthite,the microstructure appears lamellar and columnar crystals.
基金supported by funding from the National Natural Science Foundation of China(No.52277028,51577154,U1903133)
文摘Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of achieving high thermal conductivity(k),desirable dielectric performance,and robust thermomechanical properties simultaneously.Liquid crystal epoxy(LCE)emerges as a unique epoxy,exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures.This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy,while demonstrating a prominently enhanced k.As such,liquid crystal epoxy materials represent a promising solution for thermal management,with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment.This article provides a comprehensive review on recent advances in liquid crystal epoxy,emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement,organized mesoscopic domain,k,and relevant physical properties.The impacts of LC units and curing agents on the development of ordered structure are discussed,alongside the consequent effects on the k,dielectric,thermal,and other properties.External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated.Finally,potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed.
文摘The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.
文摘In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFB3605700 and 2023YFB3507403)the National Natural Science Foundation of China(Grant No.52272011)+2 种基金the Youth Innovation Promotion Association of CAS(Grant No.2023463)Plan for Anhui Major Provincial Science&Technology Project(Grant No.202203a05020002)Open Project of Advanced Laser Technology Laboratory of Anhui Province(Grant No.AHL20220ZR04).
文摘A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietveld refinement.The crystal field energy level splitting of Yb^(3+)in GdScO_(3) is determined by employing the absorption and photoluminescence spectra at 8 K.Only ^(2)F_(7/2)(4)is far from the ground state ^(2)F_(7/2)(1)by 710 cm-1 among the crystal field energy levels split from ^(2)F_(7/2),so it is more easier to realize the laser operation of ^(2)F5/2(1)^(2)F_(7/2)(4)with wavelength 1060 nm.The spin–orbit coupling parameters and intrinsic crystal field parameters(CFPs).The intrinsic crystal field parameters¯B k(k=2,4,6)of the crystal were fitted by the superposition model.The CFPs evaluated with¯Bk and coordination factor are taken as the initial parameters to fit the crystal field energy levels of the crystal,and the crystal field parameters Bk q are obtained finally with the root-mean-square deviation 9 cm-1.It is suggested that the ligand point charge,covalency and overlap interaction are slightly weaker than charge interpenetration and coulomb exchange interaction for Yb^(3+)in GdScO_(3).The obtained Hamiltonian parameters can be used to calculate crystal field energy levels and wave functions of Yb:GdScO_(3) to analyze the mechanism of the luminescence or laser.
基金supported by the National Natural Science Foundation of China(Grant Nos.62204112,12174240,and 11874253)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220774).
文摘In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52031016 and 11804027)the China Scholarship Council for financial support during part of this work
文摘The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal stability and earliest stage evolution of the local atomic clusters show no strong correlation with their initial short-range orders,and this leads to an observation of a novel symmetry convergence phenomenon,which can be understood as an atomic structure manifestation of the ergodicity.Furthermore,in our system we have quantitatively proved that the crucial factor for the thermal stability against crystallization exhibited by the metallic glass is not the total amount of icosahedral clusters,but the degree of global connectivity among them.
基金Project(52202455)supported by the National Natural Science Foundation of ChinaProject(23A0017)supported by the Key Project of Scientific Research Project of Hunan Provincial Department of Education,China。
文摘In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金financially supported by the National Natural Science Foundation of China(Nos.52425408 and 52304345)the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-016)the Postdoctoral Science Foundation of Chongqing(No.CSTB2023NSCQ-BHX0174)。
文摘Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.