Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design...Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design of the information system or the system upgrade.By comparing an existing process model with event logs,we can detect inconsistencies called deviations,verify and extend the business process model,and accordingly improve the business process.In this paper,some abnormal activities in business processes are formally defined based on Petri nets.An efficient approach to detect deviations between the process model and event logs is proposed.Then,business process models are revised when abnormal activities exist.A clinical process in a healthcare information system is used as a case study to illustrate our work.Experimental results show the effectiveness and efficiency of the proposed approach.展开更多
On the basis of analyzing and researching the current algorithms of cycle-slip detection and correction, a new method of cycle-slip detection and correction is put forward in this paper, that is, a reasonable cycle-sl...On the basis of analyzing and researching the current algorithms of cycle-slip detection and correction, a new method of cycle-slip detection and correction is put forward in this paper, that is, a reasonable cycle-slip detection condition and algorithm with corresponding program COMPRE (COMpass PRE-processing) to detect and correct cycle-slip automatically, compared with GIPSY and GAMIT software, for example, it is proved that this method is effective and credible to cycle-slip detection and correction in GPS data pre-processing.展开更多
Mechanical pressure clamps are examples of innovative tools commonly used in the oil and gas industry for arresting leaks from damaged oil and gas pipelines. However, if leaks result from pipeline rupture, clamps are ...Mechanical pressure clamps are examples of innovative tools commonly used in the oil and gas industry for arresting leaks from damaged oil and gas pipelines. However, if leaks result from pipeline rupture, clamps are not usually recommended. It is therefore obvious that inspection of the leaking pipeline is very crucial in deciding the strategy for repair. For subsea pipelines where underwater poor visibility is pronounced, this important aspect of the pipeline repair process becomes difficult to implement. The result is a repair-leak-repair cycle. This challenge is commonly found in repairs of old pipelines in unclear water conditions. Old pipelines and their vulnerability to fractures that often lead to ruptures are discussed. In this paper, the challenges and technologies available for visualisation and examination in such unclear water conditions are discussed. There appears to be a gap in the existing pipeline integrity management system with respect to inspection and repair of pipelines in unclear water conditions. This gap needs to be filled in order to minimise spills and pollution. For pipelines installed in unclear water condition, a perspective is suggested to extend the capability of existing remotely operated vehicles to employ the use of clear laminar water system or a related technique to provide integrity engineers and operators with close visual assess to inspect leaking pipelines and effect adequate repairs. This paper suggests that the use of optical eye as the main tool for examination remains valuable in managing the challenges in underwater pipeline repairs in unclear water condition.展开更多
That cycle-slips remain undetected will significantly degrade the accuracy of the navigation solution when using carrier phase measurements in global positioning system (GPS). In this paper, an algorithm based on le...That cycle-slips remain undetected will significantly degrade the accuracy of the navigation solution when using carrier phase measurements in global positioning system (GPS). In this paper, an algorithm based on length-4 symmetric/anti-symmetric (SA4) orthogonal multi-wavelet is presented to detect and identify cycle-slips in the context of the feature of the GPS zero-differential carrier phase measurements. Associated with the local singularity detection principle, cycle-slips can be detected and located precisely through the modulus maxima of the coefficients achieved by the multi-wavelet transform. Firstly, studies are focused on the feasibility of the algorithm employing the orthogonal multi-wavelet system such as Geronimo-Hardin-Massopust (GHM), Chui-Lian (CL) and SA4. Moreover, the mathematical characterization of singularities with Lipschitz exponents is explained, the modulus maxima from wavelet to multi-wavelet domain is extended and a localization formula is provided from the modulus maxima of the coefficients to the original observation. Finally, field experiments with real receiver are presented to demonstrate the effectiveness of the proposed algorithm. Because SA4 possesses the specific nature of good multi-filter properties (GMPs), it is superior to scalar wavelet and other orthogonal multi-wavelet candidates distinctly, and for the half-cycle slip, it also remains better detection, location ability and the equal complexity of wavelet transform.展开更多
Micro-light emitting diode(micro-LED)is an emerging display technology with excellent performance of high contrast,low power consumption,long lifetime,and fast response time compared with the current display(e.g.,liqu...Micro-light emitting diode(micro-LED)is an emerging display technology with excellent performance of high contrast,low power consumption,long lifetime,and fast response time compared with the current display(e.g.,liquid crystal and organic LED(OLED)).With technological advantages,micro-LED holds promise to be widely applied in augmented reality(AR),flexible screens,etc.and is thus regarded as the next generation of display technology.In the process flow of micro-LED,the step known as mass transfer that requires transferring millions of micro-LEDs from a growth substrate to a display plane,is one of the key challenges limiting the commercialization of micro-LED from laboratory.Worldwide academic and industrial efforts have been devoted to developing mass transfer strategies with purposes of improving yield and reducing cost.Herein we review three main categories of mass transfer technologies for micro-LED display(pick-and-place,fluid self-assembly and laser-enabled advanced placement)and the coupled detection and repair technologies after transfer.Discussions and comparisons have been provided about the underlying general principle,history,and representative parties,advantages,and disadvantages(yield/efficiency/cost)of these technologies.We further envision the application prospect of these transfer technologies and the promise of the future display of micro-LED.展开更多
INTRODUCTION Cerebrospinal fluid (CSF) rhinorrhea is a common condition managed by neurosurgeons. The accurate identification of the site of leak plays a key role in facilitating successful surgical repair. We repor...INTRODUCTION Cerebrospinal fluid (CSF) rhinorrhea is a common condition managed by neurosurgeons. The accurate identification of the site of leak plays a key role in facilitating successful surgical repair. We reported two surgery-proven cases of CSF rhinorrhea examined by magnetic resonance (MR) cisternography (Siemens, Berlin, Germany) and skull base coronal thin-section computed tomography (CT) scan (Siemens, Berlin, Germany) before surgical treatment.展开更多
Missing checks for untrusted inputs used in security-sensitive operations is one of the major causes of various vulnerabilities. Efficiently detecting and repairing missing checks are essential for prognosticating pot...Missing checks for untrusted inputs used in security-sensitive operations is one of the major causes of various vulnerabilities. Efficiently detecting and repairing missing checks are essential for prognosticating potential vulnerabilities and improving code reliability. We propose a systematic static analysis approach to detect missing checks for manipulable data used in security-sensitive operations of C/C++ programs and recommend repair references. First, customized securitysensitive operations are located by lightweight static analysis. Then, the assailability of sensitive data used in securitysensitive operations is determined via taint analysis. And, the existence and the risk degree of missing checks are assessed. Finally, the repair references for high-risk missing checks are recommended. We implemented the approach into an automated and cross-platform tool named Vanguard based on Clang/LLVM 3.6.0. Large-scale experimental evaluation on open-source projects has shown its effectiveness and efficiency. Furthermore, Vanguard has helped us uncover five known vulnerabilities and 12 new bugs.展开更多
基金supported by the National Natural Science Foundation of China(61170078,61472228,61903229,61902222)the “Taishan Scholar” Construction Project of Shandong Province,China,the Natural Science Foundation of Shandong Province(ZR2018MF001)+1 种基金the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2017RCJJ044)the Key Research and Development Program of Shandong Province(2018GGX101011)
文摘Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design of the information system or the system upgrade.By comparing an existing process model with event logs,we can detect inconsistencies called deviations,verify and extend the business process model,and accordingly improve the business process.In this paper,some abnormal activities in business processes are formally defined based on Petri nets.An efficient approach to detect deviations between the process model and event logs is proposed.Then,business process models are revised when abnormal activities exist.A clinical process in a healthcare information system is used as a case study to illustrate our work.Experimental results show the effectiveness and efficiency of the proposed approach.
文摘On the basis of analyzing and researching the current algorithms of cycle-slip detection and correction, a new method of cycle-slip detection and correction is put forward in this paper, that is, a reasonable cycle-slip detection condition and algorithm with corresponding program COMPRE (COMpass PRE-processing) to detect and correct cycle-slip automatically, compared with GIPSY and GAMIT software, for example, it is proved that this method is effective and credible to cycle-slip detection and correction in GPS data pre-processing.
文摘Mechanical pressure clamps are examples of innovative tools commonly used in the oil and gas industry for arresting leaks from damaged oil and gas pipelines. However, if leaks result from pipeline rupture, clamps are not usually recommended. It is therefore obvious that inspection of the leaking pipeline is very crucial in deciding the strategy for repair. For subsea pipelines where underwater poor visibility is pronounced, this important aspect of the pipeline repair process becomes difficult to implement. The result is a repair-leak-repair cycle. This challenge is commonly found in repairs of old pipelines in unclear water conditions. Old pipelines and their vulnerability to fractures that often lead to ruptures are discussed. In this paper, the challenges and technologies available for visualisation and examination in such unclear water conditions are discussed. There appears to be a gap in the existing pipeline integrity management system with respect to inspection and repair of pipelines in unclear water conditions. This gap needs to be filled in order to minimise spills and pollution. For pipelines installed in unclear water condition, a perspective is suggested to extend the capability of existing remotely operated vehicles to employ the use of clear laminar water system or a related technique to provide integrity engineers and operators with close visual assess to inspect leaking pipelines and effect adequate repairs. This paper suggests that the use of optical eye as the main tool for examination remains valuable in managing the challenges in underwater pipeline repairs in unclear water condition.
基金National Natural Science Foundation of China (61153002)
文摘That cycle-slips remain undetected will significantly degrade the accuracy of the navigation solution when using carrier phase measurements in global positioning system (GPS). In this paper, an algorithm based on length-4 symmetric/anti-symmetric (SA4) orthogonal multi-wavelet is presented to detect and identify cycle-slips in the context of the feature of the GPS zero-differential carrier phase measurements. Associated with the local singularity detection principle, cycle-slips can be detected and located precisely through the modulus maxima of the coefficients achieved by the multi-wavelet transform. Firstly, studies are focused on the feasibility of the algorithm employing the orthogonal multi-wavelet system such as Geronimo-Hardin-Massopust (GHM), Chui-Lian (CL) and SA4. Moreover, the mathematical characterization of singularities with Lipschitz exponents is explained, the modulus maxima from wavelet to multi-wavelet domain is extended and a localization formula is provided from the modulus maxima of the coefficients to the original observation. Finally, field experiments with real receiver are presented to demonstrate the effectiveness of the proposed algorithm. Because SA4 possesses the specific nature of good multi-filter properties (GMPs), it is superior to scalar wavelet and other orthogonal multi-wavelet candidates distinctly, and for the half-cycle slip, it also remains better detection, location ability and the equal complexity of wavelet transform.
基金supported by the National ScienceFoundation for Distinguished Young Scholars(51925301)the National Natural Science Foundation of China(52122315 and 21972008)+3 种基金Beijing Nova Program(Z201100006820021)the Fundamental Research Funds for the Central Universities(XK1902)the Wanren Plan(wrjh201903)the Open Project of State Key Laboratory(sklssm2022)。
文摘Micro-light emitting diode(micro-LED)is an emerging display technology with excellent performance of high contrast,low power consumption,long lifetime,and fast response time compared with the current display(e.g.,liquid crystal and organic LED(OLED)).With technological advantages,micro-LED holds promise to be widely applied in augmented reality(AR),flexible screens,etc.and is thus regarded as the next generation of display technology.In the process flow of micro-LED,the step known as mass transfer that requires transferring millions of micro-LEDs from a growth substrate to a display plane,is one of the key challenges limiting the commercialization of micro-LED from laboratory.Worldwide academic and industrial efforts have been devoted to developing mass transfer strategies with purposes of improving yield and reducing cost.Herein we review three main categories of mass transfer technologies for micro-LED display(pick-and-place,fluid self-assembly and laser-enabled advanced placement)and the coupled detection and repair technologies after transfer.Discussions and comparisons have been provided about the underlying general principle,history,and representative parties,advantages,and disadvantages(yield/efficiency/cost)of these technologies.We further envision the application prospect of these transfer technologies and the promise of the future display of micro-LED.
文摘INTRODUCTION Cerebrospinal fluid (CSF) rhinorrhea is a common condition managed by neurosurgeons. The accurate identification of the site of leak plays a key role in facilitating successful surgical repair. We reported two surgery-proven cases of CSF rhinorrhea examined by magnetic resonance (MR) cisternography (Siemens, Berlin, Germany) and skull base coronal thin-section computed tomography (CT) scan (Siemens, Berlin, Germany) before surgical treatment.
基金supported by the National Key Research and Development Program of China under Grant No. 2017YFA0700604the National Natural Science Foundation of China under Grant Nos. 61632015 and 61690204partially supported by the Collaborative Innovation Center of Novel Software Technology and Industrialization, and Nanjing University Innovation and Creative Program for Ph.D. Candidate under Grant No. 2016014.
文摘Missing checks for untrusted inputs used in security-sensitive operations is one of the major causes of various vulnerabilities. Efficiently detecting and repairing missing checks are essential for prognosticating potential vulnerabilities and improving code reliability. We propose a systematic static analysis approach to detect missing checks for manipulable data used in security-sensitive operations of C/C++ programs and recommend repair references. First, customized securitysensitive operations are located by lightweight static analysis. Then, the assailability of sensitive data used in securitysensitive operations is determined via taint analysis. And, the existence and the risk degree of missing checks are assessed. Finally, the repair references for high-risk missing checks are recommended. We implemented the approach into an automated and cross-platform tool named Vanguard based on Clang/LLVM 3.6.0. Large-scale experimental evaluation on open-source projects has shown its effectiveness and efficiency. Furthermore, Vanguard has helped us uncover five known vulnerabilities and 12 new bugs.