期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
New approach based on continuum damage mechanics with simple parameter identification to fretting fatigue life prediction 被引量:3
1
作者 Fei SHEN Weiping HU Qingchun MENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1539-1554,共16页
A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress ch... A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method. 展开更多
关键词 fretting fatigue continuum damage mechanics WEAR fatigue life finite element (FE) analysis
下载PDF
Prediction of low-cycle crack initiation life of powder superalloy FGH96 with inclusions based on damage mechanics 被引量:3
2
作者 Yuan-ming XU Shu-ming ZHANG +2 位作者 Tian-peng HE Xin-ling LIU Xia-yuan CHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第3期895-907,共13页
The effects of inclusions in powder superalloy FGH96 on low-cycle fatigue life were studied, and a low-cycle crack initiation life prediction model based on the theory of damage mechanics was proposed. The damage char... The effects of inclusions in powder superalloy FGH96 on low-cycle fatigue life were studied, and a low-cycle crack initiation life prediction model based on the theory of damage mechanics was proposed. The damage characterization parameter was proposed after the construction of damage evolution equations. Fatigue tests of the powder superalloy specimens with and without inclusion were conducted at 530 and 600 ℃, and the model verification was carried out for specimens with elliptical, semi-elliptical, polygon and strip-shaped surface/subsurface inclusion. The stress analysis was performed by finite element simulation and the predicted life was calculated. The results showed a satisfying agreement between predicted and experimental life. 展开更多
关键词 powder superalloy FGH96 low-cycle fatigue INCLUSION crack initiation life prediction damage mechanics
下载PDF
Forecasting Damage Mechanics By Deep Learning 被引量:1
3
作者 Duyen Le Hien Nguyen Dieu Thi Thanh Do +2 位作者 Jaehong Lee Timon Rabczuk Hung Nguyen-Xuan 《Computers, Materials & Continua》 SCIE EI 2019年第9期951-977,共27页
We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a signif... We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a significant demand nowadays.Relied on learning an amount of information from given data,the long short-term memory(LSTM)method and multi-layer neural networks(MNN)method are applied to predict solutions.Numerical examples are implemented for predicting fracture growth rates of L-shape concrete specimen under load ratio,single-edge-notched beam forced by 4-point shear and hydraulic fracturing in permeable porous media problems such as storage-toughness fracture regime and fracture-height growth in Marcellus shale.The predicted results by deep learning algorithms are well-agreed with experimental data. 展开更多
关键词 damage mechanics time series forecasting deep learning long short-term memory multi-layer neural networks hydraulic fracturing
下载PDF
Damage Mechanics of Ferrite Ductile Iron under Uniaxial Stress
4
作者 LIUJin-hai LIGuo-lu +2 位作者 FUHan-guang HAOXiao-yan LIUGen-sheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2003年第3期41-45,共5页
According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular c... According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent,and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained.The damage threshold of nodular cast iron increases with nodularity,but it is below the yield strength,which provides reference significance to the design of machinery structure and the choice of materials.The critical damage variable is not related to the nodularity,which is about 0. 060-0. 068. 展开更多
关键词 nodular cast iron damage mechanics evolutional law damage threshold critical damage variable
下载PDF
Failure Evaluation of Reinforced Concrete Beams Using Damage Mechanics and Classical Laminate Theory
5
作者 JoséMário Feitosa Lima Geraldo JoséBelmonte dos Santos Paulo Roberto Lopes Lima 《Journal of Architectural Environment & Structural Engineering Research》 2022年第4期1-9,共9页
The prediction of the behavior of reinforced concrete beams under bending is essential for the perfect design of these elements.Usually,the classical models do not incorporate the physical nonlinear behavior of concre... The prediction of the behavior of reinforced concrete beams under bending is essential for the perfect design of these elements.Usually,the classical models do not incorporate the physical nonlinear behavior of concrete under tension and compression,which can underestimate the deformations in the structural element under short and long-term loads.In the present work,a variational formulation based on the Finite Element Method is presented to predict the flexural behavior of reinforced concrete beams.The physical nonlinearity due cracking of concrete is considered by utilization of damage concept in the definition of constitutive models,and the lamination theory it is used in discretization of section cross of beams.In the layered approach,the reinforced concrete element is formulated as a laminated composite that consists of thin layers,of concrete or steel that has been modeled as elastic-perfectly plastic material.The comparison of numerical load-displacement results with experimental results found in the literature demonstrates a good approximation of the model and validates the application of the damage model in the Classical Laminate Theory to predict mechanical failure of reinforced concrete beam.The results obtained by the numerical model indicated a variation in the stress-strain behavior of each beam,while for under-reinforced beams,the compressive stresses did not reach the peak stress but the stress-strain behavior was observed in the nonlinear regime at failure,for the other beams,the concrete had reached its ultimate strain,and the beam’s neutral axis was close to the centroid of the cross-section. 展开更多
关键词 Reinforced concrete damage mechanics Finite element method Laminate theory
下载PDF
Ductile Fracture Characterization for Medium Carbon Steel Using Continuum Damage Mechanics
6
作者 Stergios Pericles Tsiloufas Ronald Lesley Plaut 《Materials Sciences and Applications》 2012年第11期745-755,共11页
This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and develo... This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and developed by Lemaitre. Tensile tests were carried out using loading-unloading cycles in order to capture the gradual deterioration of the elastic modulus, which may be linked to the ductile damage increase with increasing plastic strain. The mechanical parameters for the isotropic damage evolution equation were obtained and then used as inputs for a plasticity-damage coupled nu- merical algorithm, validated through numerical simulations of the experimental tensile tests. A comparison between the SAE 1050 steels studied and two carbon steel alloys (obtained from the literature), provided some basic understanding of the influence of the carbon level on the evolution of the damage parameters. An empiric relationship for this set of parameters, which can provide useful data for preliminary studies envisaging prediction of ductile failure in carbon steels, is also presented. 展开更多
关键词 Continuum damage mechanics Tensile Testing Numerical Simulation Medium Carbon Steels
下载PDF
Damage mechanics and energy absorption capabilities of natural fiber reinforced elastomeric based bio composite for sacrificial structural applications 被引量:2
7
作者 Vishwas Mahesh Sharnappa Joladarashi Satyabodh M.Kulkarni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期161-176,共16页
The present study deals with the experimental,finite element(FE)and analytical assessment of low ballistic impact response of proposed flexible‘green’composite make use of naturally available jute and rubber as the ... The present study deals with the experimental,finite element(FE)and analytical assessment of low ballistic impact response of proposed flexible‘green’composite make use of naturally available jute and rubber as the constituents of the composite with stacking sequences namely jute/rubber/jute(JRJ),jute/rubber/rubber/jute(JRRJ)and jute/rubber/jute/rubber/jute(JRJRJ).Ballistic impact tests were carried out by firing a conical projectile using a gas gun apparatus at lower range of ballistic impact regime.The ballistic impact response of the proposed flexible composites are assesses based on energy absorption and damage mechanism.Results revealed that inclusion of natural rubber aids in better energy absorption and mitigating the failure of the proposed composite.Among the three different stacking sequences of flexible composites considered,JRJRJ provides better ballistic performance compared to its counterparts.The damage study reveals that the main mechanism of failure involved in flexible composites is matrix tearing as opposed to matrix cracking in stiff composites indicating that the proposed flexible composites are free from catastrophic failure.Results obtained from experimental,FE and analytical approach pertaining to energy absorption and damage mechanism agree well with each other.The proposed flexible composites due to their exhibited energy absorption capabilities and damage mechanism are best suited as claddings for structural application subjected to impact with an aim of protecting the main structural component from being failed catastrophically. 展开更多
关键词 Flexible composite Ballistic impact Energy absorbed RUBBER damage mechanism
下载PDF
A NEW DAMAGE MECHANICS BASED APPROACH TO FATIGUE LIFE PREDICTION AND ITS ENGINEERING APPLICATION 被引量:5
8
作者 Fei Shen Weiping Hu +1 位作者 Qingchun Meng Miao Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第5期510-520,共11页
An approach based on continuum damage mechanics to fatigue life prediction for structures is proposed. A new fatigue damage evolution equation is developed, in which the pa- rameters are obtained in a simple way with ... An approach based on continuum damage mechanics to fatigue life prediction for structures is proposed. A new fatigue damage evolution equation is developed, in which the pa- rameters are obtained in a simple way with reference to the experimental results of fatigue tests on standard specimens. With the utilization of APDL language on the ANSYS platform, a finite element implementation is presented to perform coupling operation on damage evolution of mate- rial and stress redistribution. The fatigue lives of some notched specimens and a Pitch-change-link are predicted by using the above approach. The calculated results are validated with experimental data. 展开更多
关键词 fatigue damage model damage mechanics fatigue life finite element method
原文传递
A DAMAGE MECHANICS MODEL FOR FATIGUE LIFE PREDICTION OF FIBER REINFORCED POLYMER COMPOSITE LAMINA 被引量:4
9
作者 Wenjing Shi Weiping Hu Miao Zhang Qingchun Meng 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第5期399-410,共12页
A damage mechanics fatigue life prediction model for the fiber reinforced polymer lamina is established. The stiffness matrix of the lamina is derived by elastic constants of fiber and matrix. Two independent damage d... A damage mechanics fatigue life prediction model for the fiber reinforced polymer lamina is established. The stiffness matrix of the lamina is derived by elastic constants of fiber and matrix. Two independent damage degrees of fiber and matrix are introduced to establish constitutive relations with damage. The damage driving forces and damage evolution equations for fiber and matrix are derived respectively. Fatigue tests on 0° and 90° unidirectional laminates are conducted respectively to identify parameters in damage evolution equations of fiber and matrix. The failure criterion of the lamina is presented. Finally, the life prediction model for lamina is proposed. 展开更多
关键词 fiber reinforced polymer composite lamina continuum damage mechanics fatigue life prediction fiber breakage matrix cracking
原文传递
Method for Predicting Crack Initiation Life of Notched Specimen Based on Damage Mechanics 被引量:4
10
作者 LIU Jianhui WEI Yaobing +1 位作者 YAN Changfeng LANG Shanshan 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第2期286-290,共5页
Based on the theory of damage mechanics, a method for fatigue crack initiation life prediction of notched components is proposed in this paper. The damage evolution equation of notched specimen under tensioncompressio... Based on the theory of damage mechanics, a method for fatigue crack initiation life prediction of notched components is proposed in this paper. The damage evolution equation of notched specimen under tensioncompression loading is obtained in term of closed-form solution. The crack initiation life of notched specimen is estimated by the proposed method even when material and stress concentration factor are different. It has been verified that the result calculated by the proposed method agrees with the experimental result. The proposed method is concise, effective and feasible to practical application. 展开更多
关键词 crack initiation life notch specimen damage mechanics
原文传递
Fatigue-creep interaction based on continuum damage mechanics for AISI H13 hot work tool steel at elevated temperatures 被引量:7
11
作者 Hai-sheng Chen Yong-qin Wang +2 位作者 Wei-qi Du Liang Wu Yuan-xin LUO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第5期580-588,共9页
AISI H13 (4Cr5MoSiV1) is one of the commonly used materials for extrusion tool, and it suffers from fatigue-creep damage during the hot extrusion process. Stress-controlled fatigue and creep-fatigue interaction test... AISI H13 (4Cr5MoSiV1) is one of the commonly used materials for extrusion tool, and it suffers from fatigue-creep damage during the hot extrusion process. Stress-controlled fatigue and creep-fatigue interaction tests were carried out at 500℃ to investigate its damage evolution. The accumulated plastic strain was selected to define the damage variable due to its clear physical meaning. A new fatigue-creep interaction damage model was proposed on the basis of continuum damage mechanics. A new equivalent impulse density for fatigue-creep tests was proposed to incorporate the holding time effect by transforming creep impulse density into fatigue impulse density. The experimental results indicated that the damage model is able to describe the damage evolution under these working conditions. 展开更多
关键词 AISI H13 hot work tool steel · Fatigue-creep · damage evolution ·Continuum damage mechanics ·Nonlinear interaction · damage exponent
原文传递
Experimental method for and theoretical research on defect tolerance of fxed plate based on damage mechanics 被引量:1
12
作者 Zhan Zhixin Hu Weiping +2 位作者 Zhang Miao Zhu Yuefa Meng Qingchun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1195-1201,共7页
An experimental method and a theoretical analysis based on continuum damage mechan- ics are applied for the defects tolerance of fixed plate. The defects type studied in this article is scratch, which is considered a ... An experimental method and a theoretical analysis based on continuum damage mechan- ics are applied for the defects tolerance of fixed plate. The defects type studied in this article is scratch, which is considered a typical defect on fixed plate according to the engineering practice. The general approach to the defects tolerance analysis of scratched fixed plate is presented. The method of fatigue life prediction for standard notched specimens has been established on the basis of continuum damage mechanics. For the purpose of obtaining the influence law of fatigue life in consequence of scratches, fatigue experiments of standard notched specimens and scratched specimens have been done. Evalu- ation of the fatigue life of scratched fixed plate has been carried out. And the value of scratch defects permissible to the condition of safety service life has been worked out. According to the results of the- oretical calculations, the fatigue experiment of scratched fixed plate has been performed. The outcome shows that the theoretical prediction tallies with the experimental results. 展开更多
关键词 damage mechanics Defect tolerance Fatigue experiment Fixed plate Life prediction
原文传递
Continuum damage mechanics based modeling progressive failure of woven-fabric composite laminate under low velocity impact 被引量:4
13
作者 Zhi-gang HU Yan ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第3期151-164,共14页
A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane aniso... A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process. 展开更多
关键词 Continuum damage mechanics (CDM) Woven composite laminate Low velocity impact Interface element Cohesive zone
原文传递
Fatigue Reliability Analysis of Fiber-Reinforced Laminated Composites by Continuum Damage Mechanics
14
作者 Peyman Gholami 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第3期469-476,共8页
This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncerta... This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncertainties associated with mechanical properties,loading,and boundary conditions.Failure in the composite material is truly hard to trace because there are individual faults in each ply,and we face a stochastic process due to the scatter in the mechanical properties.The continuum damage mechanics(CDM),as a powerful approach,is applied to model the damage of fiber,matrix,and fiber/matrix debonding.This method defines criteria for damage detection and determines safe zones.The material constitutive equations are executed using a subroutine inAbaqus.The first-order reliability method and second-order reliability method have been applied to examine the reliability of laminated composites.The results are compared with those of the Monte Carlo simulation.Different composite laminates under different stress levels are considered for the failure probability investigation.The limit state functions and random variables have been determined based on the CDM model.Finally,the effects of the number of cycles,applied stress,and stacking sequence of the laminate on the reliability and fatigue life in fiber-reinforced laminated composites are assessed. 展开更多
关键词 Composite laminate Continuum damage mechanics Fatigue damage First-order reliability method Second-order reliability method Monte Carlo simulation
原文传递
Low-cycle fatigue lifetime estimation of Ti–6Al–4V welded joints by a continuum damage mechanics model
15
作者 Hong-Yu Qi Xiao-Lei Zheng Xiao-Guang Yang 《Rare Metals》 SCIE EI CAS CSCD 2016年第4期299-302,共4页
The low-cycle fatigue (LCF) behavior of directionally solidified nickel-based superalloy Ti-6A1-4V was studied under bare and electron beam welding condi- tions at room temperature. Results show that: (1) under t... The low-cycle fatigue (LCF) behavior of directionally solidified nickel-based superalloy Ti-6A1-4V was studied under bare and electron beam welding condi- tions at room temperature. Results show that: (1) under the same test conditions, all the joints exhibit lower LCF lifetime than Ti-6A1-4V; (2) the failure of welded structures is mainly ascribed to the welding defect. A novel lifetime prediction methodology based on continuum damage mechanics is proposed to predict the lifetime of Ti-6A1-4V and its welded joints. 展开更多
关键词 Electron beam welding Low-cycle fatigue Life estimation Continuum damage mechanics
原文传递
Creep life assessment of aero-engine recuperator based on continuum damage mechanics approach
16
作者 Pengpeng LIAO Yucai ZHANG +3 位作者 Guoyan ZHOU Xiancheng ZHANG Wenchun JIANG Shantung TU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第4期273-284,共12页
The creep life of an aeroengine recuperator is investigated in terms of continuum damage mechanics by using finite element simulations.The effects of the manifold wall thickness and creep properties of brazing filler ... The creep life of an aeroengine recuperator is investigated in terms of continuum damage mechanics by using finite element simulations.The effects of the manifold wall thickness and creep properties of brazing filler metal on the operating life of the recuperator are analyzed.Results show that the crack initiates from the brazing filler metal located on the outer surface of the manifold with the wall thickness of 2 mm and propagates throughout the whole region of the brazing filler metal when the creep time reaches 34900 h.The creep life of the recuperator meets the requirement of 40000 h continuous operation when the wall thickness increases to 3.5 mm,but its total weight increases by 15%.Decreasing the minimum creep strain rate with the enhancement of the creep strength of the brazing filler metal presents an obvious effect on the creep life of the recuperator.At the same stress level,the creep rupture time of the recuperator is enhanced by 13 times if the mismatch between the minimum creep rate of the filler and base metal is reduced by 20%. 展开更多
关键词 CREEP life assessment brazed joint continuum damage mechanics aeroengine recuperator
原文传递
Measurements of elastic properties and their dependencies within a damage mechanics workflow
17
作者 Erik PKnippel Qiquan Xiong +1 位作者 Ana Paula Villaquiran Vargas Jesse C.Hampton 《Rock Mechanics Bulletin》 2023年第4期84-94,共11页
Experimental rock mechanics testing provides a controlled and effective method for measuring physical properties,their dependencies,and their evolution due to the addition of localized microcracks.To understand the co... Experimental rock mechanics testing provides a controlled and effective method for measuring physical properties,their dependencies,and their evolution due to the addition of localized microcracks.To understand the contributions of microcracks to first order changes in compliance,the behavior of initial undamaged properties of a material should be comprehensively investigated as a function of stress,load path,and load history.We perform a comprehensive study of elastic properties and their dependence on a variety of materials exhibiting nonlinearity,and varying levels of anisotropy in elastic stiffnesses.We programmatically perturb the testing environment of the specimens under triaxial stresses.Elastic moduli are measured within each test,and along multiple discrete loading paths for multistage tests as a function of stress,focusing on a set launch point.Four single stage triaxial tests per rock type are performed to calculate Mohr-Coulomb failure criteria,and ultrasonic velocities are captured during compression for establishing the upper bound of elastic behavior.Shear wave velocity for granite experiences a maximum value at a lower differential stress than maximum volumetric strain.Sandstone displays a similar trend at the highest confining pressure,while these two maxima converge under the lowest confining pressure. 展开更多
关键词 Triaxial test Elastic moduli Ultrasonic measurements damage mechanics Rock nonlinear behavior
原文传递
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions 被引量:1
18
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 Creep experiments Creep model Thermal and mechanical damage Fractional derivative
下载PDF
Damage Mechanism of Ultra-thin Asphalt Overlay(UTAO) based on Discrete Element Method
19
作者 杜晓博 GAO Liang +4 位作者 RAO Faqiang 林宏伟 ZHANG Hongchao SUN Mutian XU Xiuchen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期473-486,共14页
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou... Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force. 展开更多
关键词 ultra-thin asphalt overlay pavement distress discrete element method meso-mechanics damage mechanism
下载PDF
Enhanced damage mechanism of reinforced concrete targets impacted by reactive PELE:An analytical model and experimental validation OA
20
作者 Jiahao Zhang Mengmeng Guo +3 位作者 Sheng Zhou Chao Ge Pengwan Chen Qingbo Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期12-30,共19页
Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an anal... Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an analytical model describing the jacket deformation and concrete target damage impacted by RPELE was presented,in which the radial rarefaction and filling deflagration reaction were considered.The impact tests of RPELE on concrete target in the 592-1012 m/s were carried out to verify the analytical model.Based on the analytical model,the angle-length evolution mechanism of the jacket bending-curling deformation was revealed,and the concrete target damage was further analyzed.One can find out that the average prediction errors of the front crater,opening and back crater are 6.8%,8.5%and 7.1%,respectively.Moreover,the effects of radial rarefaction and deflagration were discussed.It was found that the neglect of radial rarefaction overestimates the jacket deformation and concrete target damage,while the deflagration reaction of filling increases the diameter of the front crater,opening and back crater by 25.4%,24.3%and 31.1%,respectively.The research provides a valuable reference for understanding and predicting the jacket deformation and concrete target damage impacted by RPELE. 展开更多
关键词 Reactive PELE Concrete target Jacket deformation Radial rarefaction Enhanced damage mechanism
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部