期刊文献+
共找到4,565篇文章
< 1 2 229 >
每页显示 20 50 100
A Feature Extraction Method for scRNA-seq Processing and Its Application on COVID-19 Data Analysis
1
作者 Xiumin Shi Xiyuan Wu Hengyu Qin 《Journal of Beijing Institute of Technology》 EI CAS 2022年第3期285-292,共8页
Single-cell RNA-sequencing(scRNA-seq)is a rapidly increasing research area in biomed-ical signal processing.However,the high complexity of single-cell data makes efficient and accurate analysis difficult.To improve th... Single-cell RNA-sequencing(scRNA-seq)is a rapidly increasing research area in biomed-ical signal processing.However,the high complexity of single-cell data makes efficient and accurate analysis difficult.To improve the performance of single-cell RNA data processing,two single-cell features calculation method and corresponding dual-input neural network structures are proposed.In this feature extraction and fusion scheme,the features at the cluster level are extracted by hier-archical clustering and differential gene analysis,and the features at the cell level are extracted by the calculation of gene frequency and cross cell frequency.Our experiments on COVID-19 data demonstrate that the combined use of these two feature achieves great results and high robustness for classification tasks. 展开更多
关键词 biomedical signal processing scRNA-seq feature extraction COVID-19
下载PDF
Identification of Software Bugs by Analyzing Natural Language-Based Requirements Using Optimized Deep Learning Features
2
作者 Qazi Mazhar ul Haq Fahim Arif +4 位作者 Khursheed Aurangzeb Noor ul Ain Javed Ali Khan Saddaf Rubab Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2024年第3期4379-4397,共19页
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learn... Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learning to predict software bugs,but a more precise and general approach is needed.Accurate bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning methods.However,these studies are not generalized and efficient when extended to other datasets.Therefore,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems.The methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a model.Four National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were combined.It reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode. 展开更多
关键词 Natural language processing software bug prediction transfer learning ensemble learning feature selection
下载PDF
An intelligent prediction model of epidemic characters based on multi-feature
3
作者 Xiaoying Wang Chunmei Li +6 位作者 Yilei Wang Lin Yin Qilin Zhou Rui Zheng Qingwu Wu Yuqi Zhou Min Dai 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期595-607,共13页
The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epi... The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters. 展开更多
关键词 artificial intelligence big data data analysis evaluation feature extraction intelligent information processing medical applications
下载PDF
Application of Feature, Event, and Process Methods to Leakage Scenario Development for Offshore CO_(2) Geological Storage
4
作者 Qiang Liu Yanzun Li +2 位作者 Meng Jing Qi Li Guizhen Liu 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期608-616,共9页
Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substant... Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substantial concern associated with this technology. This study introduces an innovative approach for establishing OCGS leakage scenarios, involving four pivotal stages, namely, interactive matrix establishment, risk matrix evaluation, cause–effect analysis, and scenario development, which has been implemented in the Pearl River Estuary Basin in China. The initial phase encompassed the establishment of an interaction matrix for OCGS systems based on features, events, and processes. Subsequent risk matrix evaluation and cause–effect analysis identified key system components, specifically CO_(2) injection and faults/features. Building upon this analysis, two leakage risk scenarios were successfully developed, accompanied by the corresponding mitigation measures. In addition, this study introduces the application of scenario development to risk assessment, including scenario numerical simulation and quantitative assessment. Overall, this research positively contributes to the sustainable development and safe operation of OCGS projects and holds potential for further refinement and broader application to diverse geographical environments and project requirements. This comprehensive study provides valuable insights into the establishment of OCGS leakage scenarios and demonstrates their practical application to risk assessment, laying the foundation for promoting the sustainable development and safe operation of ocean CO_(2) geological storage projects while proposing possibilities for future improvements and broader applications to different contexts. 展开更多
关键词 Offshore CO_(2)geological storage features events and processes Scenario development Interaction matrix Risk matrix assessment
下载PDF
Improving VQA via Dual-Level Feature Embedding Network
5
作者 Yaru Song Huahu Xu Dikai Fang 《Intelligent Automation & Soft Computing》 2024年第3期397-416,共20页
Visual Question Answering(VQA)has sparked widespread interest as a crucial task in integrating vision and language.VQA primarily uses attention mechanisms to effectively answer questions to associate relevant visual r... Visual Question Answering(VQA)has sparked widespread interest as a crucial task in integrating vision and language.VQA primarily uses attention mechanisms to effectively answer questions to associate relevant visual regions with input questions.The detection-based features extracted by the object detection network aim to acquire the visual attention distribution on a predetermined detection frame and provide object-level insights to answer questions about foreground objects more effectively.However,it cannot answer the question about the background forms without detection boxes due to the lack of fine-grained details,which is the advantage of grid-based features.In this paper,we propose a Dual-Level Feature Embedding(DLFE)network,which effectively integrates grid-based and detection-based image features in a unified architecture to realize the complementary advantages of both features.Specifically,in DLFE,In DLFE,firstly,a novel Dual-Level Self-Attention(DLSA)modular is proposed to mine the intrinsic properties of the two features,where Positional Relation Attention(PRA)is designed to model the position information.Then,we propose a Feature Fusion Attention(FFA)to address the semantic noise caused by the fusion of two features and construct an alignment graph to enhance and align the grid and detection features.Finally,we use co-attention to learn the interactive features of the image and question and answer questions more accurately.Our method has significantly improved compared to the baseline,increasing accuracy from 66.01%to 70.63%on the test-std dataset of VQA 1.0 and from 66.24%to 70.91%for the test-std dataset of VQA 2.0. 展开更多
关键词 Visual question answering multi-modal feature processing attention mechanisms cross-model fusion
下载PDF
Building Facade Point Clouds Segmentation Based on Optimal Dual-Scale Feature Descriptors
6
作者 Zijian Zhang Jicang Wu 《Journal of Computer and Communications》 2024年第6期226-245,共20页
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca... To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings. 展开更多
关键词 3D Laser Scanning Point Clouds Building Facade Segmentation Point Cloud processing feature Descriptors
下载PDF
A novel technique for automatic seismic data processing using both integral and local feature of seismograms 被引量:3
7
作者 Ping Jin Chengliu Zhang +4 位作者 Xufeng Shen Hongchun Wang Changzhou Pan Na Lu Xiong Xu 《Earthquake Science》 2014年第3期337-349,共13页
A novel technique for automatic seismic data processing using both integral and local feature of seismograms was presented in this paper. Here, the term integral feature of seismograms refers to feature which may depi... A novel technique for automatic seismic data processing using both integral and local feature of seismograms was presented in this paper. Here, the term integral feature of seismograms refers to feature which may depict the shape of the whole seismograms. However, unlike some previous efforts which completely abandon the DIAL approach, i.e., signal detection, phase identifi- cation, association, and event localization, and seek to use envelope cross-correlation to detect seismic events directly, our technique keeps following the DIAL approach, but in addition to detect signals corresponding to individual seismic phases, it also detects continuous wave-trains and explores their feature for phase-type identification and signal association. More concrete ideas about how to define wave-trains and combine them with various detections, as well as how to measure and utilize their feature in the seismic data processing were expatiated in the paper. This approach has been applied to the routine data processing by us for years, and test results for a 16 days' period using data from the Xinjiang seismic station network were presented. The automatic processing results have fairly low false and missed event rate simultaneously, showing that the new technique has good application prospects for improvement of the automatic seismic data processing. 展开更多
关键词 Seismic - Automatic data processing feature of seismograms
下载PDF
Compared Insights on Machine-Learning Anomaly Detection for Process Control Feature 被引量:1
8
作者 Ming Wan Quanliang Li +3 位作者 Jiangyuan Yao Yan Song Yang Liu Yuxin Wan 《Computers, Materials & Continua》 SCIE EI 2022年第11期4033-4049,共17页
Anomaly detection is becoming increasingly significant in industrial cyber security,and different machine-learning algorithms have been generally acknowledged as various effective intrusion detection engines to succes... Anomaly detection is becoming increasingly significant in industrial cyber security,and different machine-learning algorithms have been generally acknowledged as various effective intrusion detection engines to successfully identify cyber attacks.However,different machine-learning algorithms may exhibit their own detection effects even if they analyze the same feature samples.As a sequence,after developing one feature generation approach,the most effective and applicable detection engines should be desperately selected by comparing distinct properties of each machine-learning algorithm.Based on process control features generated by directed function transition diagrams,this paper introduces five different machine-learning algorithms as alternative detection engines to discuss their matching abilities.Furthermore,this paper not only describes some qualitative properties to compare their advantages and disadvantages,but also gives an in-depth and meticulous research on their detection accuracies and consuming time.In the verified experiments,two attack models and four different attack intensities are defined to facilitate all quantitative comparisons,and the impacts of detection accuracy caused by the feature parameter are also comparatively analyzed.All experimental results can clearly explain that SVM(Support Vector Machine)and WNN(Wavelet Neural Network)are suggested as two applicable detection engines under differing cases. 展开更多
关键词 Anomaly detection machine-learning algorithm process control feature qualitative and quantitative comparisons
下载PDF
Applying Digital Image Processing to Evaluate a Extraction Method of Cartographic Features in Digital Images
9
作者 Erivaldo Antonio da Silva Guilherme Pina Cardim 《Journal of Earth Science and Engineering》 2012年第4期241-246,共6页
A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perfo... A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process. 展开更多
关键词 Remote sensing cartographic features extraction evaluate process digital image processing.
下载PDF
A FORMAL REPRESENTATION FOR FEATURE-BASED DESIGN 被引量:1
10
作者 孙正兴 丁秋林 张福炎 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第1期37-46,共10页
Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal re... Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal representation,design process model and design algorithm.The implementing scheme and formal description of feature taxonomy,feature operator,feature model validation and feature transformation are given in the paper.The feature based design process model suited for either sequencial or concurrent engineering is proposed and its application to product structural design and process plan design is presented. Some general design algorithms for developing feature based design system are also addressed.The proposed scheme provides a formal methodology elementary for feature based design system development and operation in a structural way. 展开更多
关键词 CAD CAM product modelling design process feature based design representation formalism
下载PDF
A Feature Definition Hierarchy for Supporting Design Process
11
作者 孙正兴 张福炎 蔡士杰 《Journal of Southeast University(English Edition)》 EI CAS 1999年第1期55-62,共8页
The adaptability of features definition to applications is an essential condition for implementing feature based design. This paper makes attempt to present a hierarchical definition structure of features. The propos... The adaptability of features definition to applications is an essential condition for implementing feature based design. This paper makes attempt to present a hierarchical definition structure of features. The proposed scheme divides feature definition into application level, form level and geometric level, and provides links between different levels with feature semantics interpretation and enhanced geometric face adjacent graph. respectively. The results not only enable feature definition to abate from the specific dependence and become more extensive, but also provide a theoretical foundation for establishing the concurrent feature based design process model. 展开更多
关键词 design process feature based modeling feature definition hierarchical construction
下载PDF
Automated detection and identification of white-backed planthoppers in paddy fields using image processing 被引量:14
12
作者 YAO Qing CHEN Guo-te +3 位作者 WANG Zheng ZHANG Chao YANG Bao-jun TANG Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1547-1557,共11页
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective.... A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields. 展开更多
关键词 white-backed planthopper developmental stage automated detection and identification image processing histogram of oriented gradient features gabor features local binary pattern features
下载PDF
Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery 被引量:13
13
作者 徐涵秋 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期146-150,157,共6页
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati... In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference. 展开更多
关键词 LANDSAT radiometrie correction data normalization pseudo-invariant features image processing.
下载PDF
Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding 被引量:8
14
作者 王腾 高向东 +1 位作者 Katayama SEIJI 金小莉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第3期245-251,共7页
High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface pla... High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding. 展开更多
关键词 plasma feature color image processing disk laser welding
下载PDF
A New Pattern Recognition Method for Detection and Localization of Myocardial Infarction Using T-Wave Integral and Total Integral as Extracted Features from One Cycle of ECG Signal 被引量:6
15
作者 Naser Safdarian Nader Jafarnia Dabanloo Gholamreza Attarodi 《Journal of Biomedical Science and Engineering》 2014年第10期818-824,共7页
In this paper we used two new features i.e. T-wave integral and total integral as extracted feature from one cycle of normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ... In this paper we used two new features i.e. T-wave integral and total integral as extracted feature from one cycle of normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our previous work we used some features of body surface potential map data for this aim. But we know the standard ECG is more popular, so we focused our detection and localization of MI on standard ECG. We use the T-wave integral because this feature is important impression of T-wave in MI. The second feature in this research is total integral of one ECG cycle, because we believe that the MI affects the morphology of the ECG signal which leads to total integral changes. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI, because this method has very good accuracy for classification of normal signal and abnormal signal. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 76% for accuracy in test data for localization and over 94% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve the accuracy of classification by adding more features in this method. A simple method based on using only two features which were extracted from standard ECG is presented and has good accuracy in MI localization. 展开更多
关键词 ECG SIGNAL Classification SIGNAL processing Myocardial INFARCTION featureS Extraction Neural Network
下载PDF
Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace 被引量:4
16
作者 赵旭 阎威武 邵惠鹤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6期759-764,共6页
Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a n... Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed.The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or tilling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis. 展开更多
关键词 batch monitoring fault diagnosis feature extract FISHER DISCRIMINANT analysis PENICILLIN FERMENTATION process
下载PDF
Mesomechanics coal experiment and an elastic-brittle damage model based on texture features 被引量:3
17
作者 Sun Chuanmeng Cao Shugang Li Yong 《International Journal of Mining Science and Technology》 EI CSCD 2018年第4期634-642,共9页
To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage ... To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result. 展开更多
关键词 Mesomechanics experiment Image processing Texture feature Damage variable Damage model
下载PDF
Terrorism Attack Classification Using Machine Learning: The Effectiveness of Using Textual Features Extracted from GTD Dataset
18
作者 Mohammed Abdalsalam Chunlin Li +1 位作者 Abdelghani Dahou Natalia Kryvinska 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1427-1467,共41页
One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelli... One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier. 展开更多
关键词 Artificial intelligence machine learning natural language processing data analytic DistilBERT feature extraction terrorism classification GTD dataset
下载PDF
Multi-features Based Approach for Moving Shadow Detection 被引量:4
19
作者 周宁 周曼丽 +1 位作者 许毅平 方宝红 《Journal of Donghua University(English Edition)》 EI CAS 2004年第6期76-80,共5页
In the video-based surveillance application, moving shadows can affect the correct localization and detection of moving objects. This paper aims to present a method for shadow detection and suppression used for moving... In the video-based surveillance application, moving shadows can affect the correct localization and detection of moving objects. This paper aims to present a method for shadow detection and suppression used for moving visual object detection. The major novelty of the shadow suppression is the integration of several features including photometric invariant color feature, motion edge feature, and spatial feature etc. By modifying process for false shadow detected, the averaging detection rate of moving object reaches above 90% in the test of Hall-Monitor sequence. 展开更多
关键词 MOVING SHADOW detection MULTI - features MOVING OBJECT DETECTION
下载PDF
Original askiatic imaging used in Chinese medicine eye-feature diagnosis of visceral diseases 被引量:2
20
作者 Ning Xue Kai Jiang +9 位作者 Qi Li Lili Zhang Li Ma Ruliang Wang Rongxin Fu Xue Lin Ya Su Xiangyu Jin Rongzan Lin Guoliang Huang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第4期92-97,共6页
Eye-feature diagnosis is a time-homored met hod for studying many diseases in tradit ional Chinese medicine.There is a dlose relationship between eye feature and viscera,and eye feature is a reflect ion of viscer al h... Eye-feature diagnosis is a time-homored met hod for studying many diseases in tradit ional Chinese medicine.There is a dlose relationship between eye feature and viscera,and eye feature is a reflect ion of viscer al health status.Commercially used ophthalmology diagnosis instr uments have disadvantages and cannot satisfy the requirements of eye feature diagnosis.In this paper,we proposed a novel askiatic imaging method that removes the interference of an ilumination source's reflection shadow and is free from image splicing.We developed a novel imaging system to implement this method,and some eye feature characteristics to analyze visceral diseases were obtained. 展开更多
关键词 In vivo eye feature diagnosis askiatic imaging image processing
下载PDF
上一页 1 2 229 下一页 到第
使用帮助 返回顶部