Encoding system plays a significant role in quantum key distribution(QKD).However,the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devi...Encoding system plays a significant role in quantum key distribution(QKD).However,the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devices.To alleviate the influence of misalignments,a method exploiting statistics from mismatched basis is proposed to enable uncharacterized sources to generate secure keys in QKD.In this work,we propose a scheme on four-intensity decoy-state quantum key distribution with uncharacterized heralded single-photon sources.It only requires the source states are prepared in a two-dimensional Hilbert space,and can thus reduce the complexity of practical realizations.Moreover,we carry out corresponding numerical simulations and demonstrate that our present four-intensity decoy-state scheme can achieve a much higher key rate compared than a three-intensity decoy-state method,and meantime it can obtain a longer transmission distance compared than the one using weak coherent sources.展开更多
Passive decoy-state quantum key distribution systems, proven to be more desirable than active ones in some scenarios, also have the problem of device imperfections like finite-length keys. In this paper, based on the ...Passive decoy-state quantum key distribution systems, proven to be more desirable than active ones in some scenarios, also have the problem of device imperfections like finite-length keys. In this paper, based on the WCP source which can be used for the passive decoy-state method, we obtain the expressions of single-photon error rates, single-photon counts, and phase error rates. According to the information of smooth min-entropy, we calculate the key generation rate under the condition of finite-length key. Key generation rates with different numbers of pulses are compared by numerical simulations. From the results, it can be seen that the passive decoy-state method can have good results if the total number of pulses reaches 1010. We also simulate the passive decoy-state method with different probabilities of choosing a pulse for parameter estimation when the number of pulses is fixed.展开更多
Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a p...Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a passive decoy-state RFI-QKD protocol with heralded single-photon source(HSPS)and present its security analysis.Compared with RFI QKD using a weak coherent pulse source(WCPS),numerical simulations show that the passive decoy-state RFI QKD with HSPS performs better not only in secret key rate but also in secure transmission distance.Moreover,our protocol is robust against the relative motion of the reference frames as well as RFI QKD with the WCPS.In addition,we also exploit Hoeffding's inequality to investigate the finite-key effect on the security of the protocol.展开更多
Quantum secure direct communication(QSDC) has been demonstrated in both fiber-based and free-space channels using attenuated lasers. Decoy-state QSDC by exploiting four decoy states has been proposed to address the pr...Quantum secure direct communication(QSDC) has been demonstrated in both fiber-based and free-space channels using attenuated lasers. Decoy-state QSDC by exploiting four decoy states has been proposed to address the problem of photon-numbersplitting attacks caused by the use of attenuated lasers. In this study, we present an analysis of the practical aspects of decoy-state QSDC. First, we design a two-decoy-state protocol that only requires two decoy states, thereby significantly reducing experimental complexity. Second, we successfully perform full parameter optimization for a real-life QSDC system by introducing a genetic algorithm. Our simulation results show that the two-decoy-state protocol could be the best choice for developing a practical QSDC system. Furthermore, full optimization is crucial for a high-performance QSDC system. Our work serves as a major step toward the further development of practical decoy-state QSDC systems.展开更多
Measurement-device-independent quantum key distribution(MDI-QKD) is aimed at removing all detector side channel attacks,while its security relies on the assumption that the encoding systems including sources are fully...Measurement-device-independent quantum key distribution(MDI-QKD) is aimed at removing all detector side channel attacks,while its security relies on the assumption that the encoding systems including sources are fully characterized by the two legitimate parties. By exploiting the mismatched-basis statistics in the security analysis, MDI-QKD even with uncharacterized qubits can generate secret keys. In this paper, considering the finite size effect, we study the decoy-state MDI-QKD protocol with mismatchedbasis events statistics by performing full parameter optimization, and the simulation result shows that this scheme is very practical.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074194,12104240,and 62101285)the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key Research and Development Program(Grant No.BE2022071)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20192001 and BK20210582).
文摘Encoding system plays a significant role in quantum key distribution(QKD).However,the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devices.To alleviate the influence of misalignments,a method exploiting statistics from mismatched basis is proposed to enable uncharacterized sources to generate secure keys in QKD.In this work,we propose a scheme on four-intensity decoy-state quantum key distribution with uncharacterized heralded single-photon sources.It only requires the source states are prepared in a two-dimensional Hilbert space,and can thus reduce the complexity of practical realizations.Moreover,we carry out corresponding numerical simulations and demonstrate that our present four-intensity decoy-state scheme can achieve a much higher key rate compared than a three-intensity decoy-state method,and meantime it can obtain a longer transmission distance compared than the one using weak coherent sources.
基金supported by the National Natural Science Foundation of China(Grant No.11304397)
文摘Passive decoy-state quantum key distribution systems, proven to be more desirable than active ones in some scenarios, also have the problem of device imperfections like finite-length keys. In this paper, based on the WCP source which can be used for the passive decoy-state method, we obtain the expressions of single-photon error rates, single-photon counts, and phase error rates. According to the information of smooth min-entropy, we calculate the key generation rate under the condition of finite-length key. Key generation rates with different numbers of pulses are compared by numerical simulations. From the results, it can be seen that the passive decoy-state method can have good results if the total number of pulses reaches 1010. We also simulate the passive decoy-state method with different probabilities of choosing a pulse for parameter estimation when the number of pulses is fixed.
基金Supported by the National Basic Research Program of China under Grant No 2013CB338002the National Natural Science Foundation of China under Grant Nos 61505261,61675235,61605248 and 11304397
文摘Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a passive decoy-state RFI-QKD protocol with heralded single-photon source(HSPS)and present its security analysis.Compared with RFI QKD using a weak coherent pulse source(WCPS),numerical simulations show that the passive decoy-state RFI QKD with HSPS performs better not only in secret key rate but also in secure transmission distance.Moreover,our protocol is robust against the relative motion of the reference frames as well as RFI QKD with the WCPS.In addition,we also exploit Hoeffding's inequality to investigate the finite-key effect on the security of the protocol.
基金supported by the National Natural Science Foundation of China(Grant Nos.62171144,62031024,and 11865004)the Guangxi Science Foundation(Grant No.2017GXNSFBA198231)。
文摘Quantum secure direct communication(QSDC) has been demonstrated in both fiber-based and free-space channels using attenuated lasers. Decoy-state QSDC by exploiting four decoy states has been proposed to address the problem of photon-numbersplitting attacks caused by the use of attenuated lasers. In this study, we present an analysis of the practical aspects of decoy-state QSDC. First, we design a two-decoy-state protocol that only requires two decoy states, thereby significantly reducing experimental complexity. Second, we successfully perform full parameter optimization for a real-life QSDC system by introducing a genetic algorithm. Our simulation results show that the two-decoy-state protocol could be the best choice for developing a practical QSDC system. Furthermore, full optimization is crucial for a high-performance QSDC system. Our work serves as a major step toward the further development of practical decoy-state QSDC systems.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61201239,61205118,11304397 and 61475148)+1 种基金China Postdoctoral Science Foundation(Grant No.2013M540514)Anhui Provincial Natural Science Foundation(Grant No.1408085QF102)
文摘Measurement-device-independent quantum key distribution(MDI-QKD) is aimed at removing all detector side channel attacks,while its security relies on the assumption that the encoding systems including sources are fully characterized by the two legitimate parties. By exploiting the mismatched-basis statistics in the security analysis, MDI-QKD even with uncharacterized qubits can generate secret keys. In this paper, considering the finite size effect, we study the decoy-state MDI-QKD protocol with mismatchedbasis events statistics by performing full parameter optimization, and the simulation result shows that this scheme is very practical.