Cloud computing is a high network infrastructure where users,owners,third users,authorized users,and customers can access and store their information quickly.The use of cloud computing has realized the rapid increase ...Cloud computing is a high network infrastructure where users,owners,third users,authorized users,and customers can access and store their information quickly.The use of cloud computing has realized the rapid increase of information in every field and the need for a centralized location for processing efficiently.This cloud is nowadays highly affected by internal threats of the user.Sensitive applications such as banking,hospital,and business are more likely affected by real user threats.An intruder is presented as a user and set as a member of the network.After becoming an insider in the network,they will try to attack or steal sensitive data during information sharing or conversation.The major issue in today's technological development is identifying the insider threat in the cloud network.When data are lost,compromising cloud users is difficult.Privacy and security are not ensured,and then,the usage of the cloud is not trusted.Several solutions are available for the external security of the cloud network.However,insider or internal threats need to be addressed.In this research work,we focus on a solution for identifying an insider attack using the artificial intelligence technique.An insider attack is possible by using nodes of weak users’systems.They will log in using a weak user id,connect to a network,and pretend to be a trusted node.Then,they can easily attack and hack information as an insider,and identifying them is very difficult.These types of attacks need intelligent solutions.A machine learning approach is widely used for security issues.To date,the existing lags can classify the attackers accurately.This information hijacking process is very absurd,which motivates young researchers to provide a solution for internal threats.In our proposed work,we track the attackers using a user interaction behavior pattern and deep learning technique.The usage of mouse movements and clicks and keystrokes of the real user is stored in a database.The deep belief neural network is designed using a restricted Boltzmann machine(RBM)so that the layer of RBM communicates with the previous and subsequent layers.The result is evaluated using a Cooja simulator based on the cloud environment.The accuracy and F-measure are highly improved compared with when using the existing long short-term memory and support vector machine.展开更多
Urban Growth Models (UGMs) are very essential for a sustainable development of a city as they predict the future urbanization based on the present scenario. Neural Network based Cellular Automata models have proved to...Urban Growth Models (UGMs) are very essential for a sustainable development of a city as they predict the future urbanization based on the present scenario. Neural Network based Cellular Automata models have proved to predict the urban growth more close to reality. Recently, deep learning based techniques are being used for the prediction of urban growth. In this current study, urban growth of Chennai Metropolitan Area (CMA) of 2017 was predicted using Neural Network based Cellular Automata (NN-CA) model and Deep belief based Cellular Automata (DB-CA) model using 2010 and 2013 urban maps. Since the study area experienced congested type of urban growth, “Existing Built-Up” of 2013 alone was used as the agent of urbanization to predict urban growth in 2017. Upon validating, DB-CA model proved to be the better model, as it predicted 524.14 km2 of the study area as urban with higher accuracy (kappa co-efficient: 0.73) when compared to NN-CA model which predicted only 502.42 km2 as urban (kappa co-efficient: 0.71), while the observed urban cover of CMA in 2017 was 572.11 km2. This study also aimed at analyzing the effects of different types of neighbourhood configurations (Rectangular: 3 × 3, 5 × 5, 7 × 7 and Circular: 3 × 3) on the prediction output based on DB-CA model. To understand the direction and type of the urban growth, the study area was divided into five distance based zones with the State Secretariat as the center and entropy values were calculated for the zones. Results reveal that Chennai Corporation and its periphery experience congested urbanization whereas areas away from the Corporation boundary follow dispersed type of urban growth in 2017.展开更多
Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed un...Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.展开更多
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We...The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.展开更多
Recently medical image classification plays a vital role in medical image retrieval and computer-aided diagnosis system.Despite deep learning has proved to be superior to previous approaches that depend on handcrafted...Recently medical image classification plays a vital role in medical image retrieval and computer-aided diagnosis system.Despite deep learning has proved to be superior to previous approaches that depend on handcrafted features;it remains difficult to implement because of the high intra-class variance and inter-class similarity generated by the wide range of imaging modalities and clinical diseases.The Internet of Things(IoT)in healthcare systems is quickly becoming a viable alternative for delivering high-quality medical treatment in today’s e-healthcare systems.In recent years,the Internet of Things(IoT)has been identified as one of the most interesting research subjects in the field of health care,notably in the field of medical image processing.For medical picture analysis,researchers used a combination of machine and deep learning techniques as well as artificial intelligence.These newly discovered approaches are employed to determine diseases,which may aid medical specialists in disease diagnosis at an earlier stage,giving precise,reliable,efficient,and timely results,and lowering death rates.Based on this insight,a novel optimal IoT-based improved deep learning model named optimization-driven deep belief neural network(ODBNN)is proposed in this article.In context,primarily image quality enhancement procedures like noise removal and contrast normalization are employed.Then the preprocessed image is subjected to feature extraction techniques in which intensity histogram,an average pixel of RGB channels,first-order statistics,Grey Level Co-Occurrence Matrix,Discrete Wavelet Transform,and Local Binary Pattern measures are extracted.After extracting these sets of features,the May Fly optimization technique is adopted to select the most relevant features.The selected features are fed into the proposed classification algorithm in terms of classifying similar input images into similar classes.The proposed model is evaluated in terms of accuracy,precision,recall,and f-measure.The investigation evident the performance of incorporating optimization techniques for medical image classification is better than conventional techniques.展开更多
Software is unavoidable in software development and maintenance.In literature,many methods are discussed which fails to achieve efficient software bug detection and classification.In this paper,efficient Adaptive Deep...Software is unavoidable in software development and maintenance.In literature,many methods are discussed which fails to achieve efficient software bug detection and classification.In this paper,efficient Adaptive Deep Learning Model(ADLM)is developed for automatic duplicate bug report detection and classification process.The proposed ADLM is a combination of Conditional Random Fields decoding with Long Short-Term Memory(CRF-LSTM)and Dingo Optimizer(DO).In the CRF,the DO can be consumed to choose the efficient weight value in network.The proposed automatic bug report detection is proceeding with three stages like pre-processing,feature extraction in addition bug detection with classification.Initially,the bug report input dataset is gathered from the online source system.In the pre-processing phase,the unwanted information from the input data are removed by using cleaning text,convert data types and null value replacement.The pre-processed data is sent into the feature extraction phase.In the feature extraction phase,the four types of feature extraction method are utilized such as contextual,categorical,temporal and textual.Finally,the features are sent to the proposed ADLM for automatic duplication bug report detection and classification.The proposed methodology is proceeding with two phases such as training and testing phases.Based on the working process,the bugs are detected and classified from the input data.The projected technique is assessed by analyzing performance metrics such as accuracy,precision,Recall,F_Measure and kappa.展开更多
Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning n...Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning named deep belief network embedded with Softmax regress (DBNESR) as a natural source for obtaining additional, complementary hierarchical representations, which helps to relieve us from the complicated hand-crafted feature-design step. DBNESR first learns hierarchical representations of feature by greedy layer-wise unsupervised learning in a feed-forward (bottom-up) and back-forward (top-down) manner and then makes more efficient recognition with Softmax regress by supervised learning. As a comparison with the algorithms only based on supervised learning, we again propose and design many kinds of classifiers: BP, HBPNNs, RBF, HRBFNNs, SVM and multiple classification decision fusion classifier (MCDFC)—hybrid HBPNNs-HRBFNNs-SVM classifier. The conducted experiments validate: Firstly, the proposed DBNESR is optimal for face recognition with the highest and most stable recognition rates;second, the algorithm combining unsupervised and supervised learning has better effect than all supervised learning algorithms;third, hybrid neural networks have better effect than single model neural network;fourth, the average recognition rate and variance of these algorithms in order of the largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR;at last, it reflects hierarchical representations of feature by DBNESR in terms of its capability of modeling hard artificial intelligent tasks.展开更多
The primary frequency response ability plays a crucial role in the rapid recovery and stability of the power grid when the grid is disturbed to generate a power imbalance.In order to predict the primary frequency cont...The primary frequency response ability plays a crucial role in the rapid recovery and stability of the power grid when the grid is disturbed to generate a power imbalance.In order to predict the primary frequency control ability of power system,a new model is proposed based on deep belief networks.The key feature of the proposed model lies in the fact that it considers three key factors,i.e.,disturbance information,system state feature,and unit operation mode.Through this way,it predicts the primary frequency control ability of the power system accurately.The simulation results on real power system data verify the feasibility and accuracy of the proposed model.展开更多
文摘Cloud computing is a high network infrastructure where users,owners,third users,authorized users,and customers can access and store their information quickly.The use of cloud computing has realized the rapid increase of information in every field and the need for a centralized location for processing efficiently.This cloud is nowadays highly affected by internal threats of the user.Sensitive applications such as banking,hospital,and business are more likely affected by real user threats.An intruder is presented as a user and set as a member of the network.After becoming an insider in the network,they will try to attack or steal sensitive data during information sharing or conversation.The major issue in today's technological development is identifying the insider threat in the cloud network.When data are lost,compromising cloud users is difficult.Privacy and security are not ensured,and then,the usage of the cloud is not trusted.Several solutions are available for the external security of the cloud network.However,insider or internal threats need to be addressed.In this research work,we focus on a solution for identifying an insider attack using the artificial intelligence technique.An insider attack is possible by using nodes of weak users’systems.They will log in using a weak user id,connect to a network,and pretend to be a trusted node.Then,they can easily attack and hack information as an insider,and identifying them is very difficult.These types of attacks need intelligent solutions.A machine learning approach is widely used for security issues.To date,the existing lags can classify the attackers accurately.This information hijacking process is very absurd,which motivates young researchers to provide a solution for internal threats.In our proposed work,we track the attackers using a user interaction behavior pattern and deep learning technique.The usage of mouse movements and clicks and keystrokes of the real user is stored in a database.The deep belief neural network is designed using a restricted Boltzmann machine(RBM)so that the layer of RBM communicates with the previous and subsequent layers.The result is evaluated using a Cooja simulator based on the cloud environment.The accuracy and F-measure are highly improved compared with when using the existing long short-term memory and support vector machine.
文摘Urban Growth Models (UGMs) are very essential for a sustainable development of a city as they predict the future urbanization based on the present scenario. Neural Network based Cellular Automata models have proved to predict the urban growth more close to reality. Recently, deep learning based techniques are being used for the prediction of urban growth. In this current study, urban growth of Chennai Metropolitan Area (CMA) of 2017 was predicted using Neural Network based Cellular Automata (NN-CA) model and Deep belief based Cellular Automata (DB-CA) model using 2010 and 2013 urban maps. Since the study area experienced congested type of urban growth, “Existing Built-Up” of 2013 alone was used as the agent of urbanization to predict urban growth in 2017. Upon validating, DB-CA model proved to be the better model, as it predicted 524.14 km2 of the study area as urban with higher accuracy (kappa co-efficient: 0.73) when compared to NN-CA model which predicted only 502.42 km2 as urban (kappa co-efficient: 0.71), while the observed urban cover of CMA in 2017 was 572.11 km2. This study also aimed at analyzing the effects of different types of neighbourhood configurations (Rectangular: 3 × 3, 5 × 5, 7 × 7 and Circular: 3 × 3) on the prediction output based on DB-CA model. To understand the direction and type of the urban growth, the study area was divided into five distance based zones with the State Secretariat as the center and entropy values were calculated for the zones. Results reveal that Chennai Corporation and its periphery experience congested urbanization whereas areas away from the Corporation boundary follow dispersed type of urban growth in 2017.
基金supported in part by the National Natural Science Foundation of China(No.51606213)the National Major Science and Technology Projects(No.J2019-III-0010-0054)。
文摘Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.
文摘The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.
基金This research is financially supported by the Deanship of Scientific Research at King Khalid University under research grant number(RGP.2/202/43).
文摘Recently medical image classification plays a vital role in medical image retrieval and computer-aided diagnosis system.Despite deep learning has proved to be superior to previous approaches that depend on handcrafted features;it remains difficult to implement because of the high intra-class variance and inter-class similarity generated by the wide range of imaging modalities and clinical diseases.The Internet of Things(IoT)in healthcare systems is quickly becoming a viable alternative for delivering high-quality medical treatment in today’s e-healthcare systems.In recent years,the Internet of Things(IoT)has been identified as one of the most interesting research subjects in the field of health care,notably in the field of medical image processing.For medical picture analysis,researchers used a combination of machine and deep learning techniques as well as artificial intelligence.These newly discovered approaches are employed to determine diseases,which may aid medical specialists in disease diagnosis at an earlier stage,giving precise,reliable,efficient,and timely results,and lowering death rates.Based on this insight,a novel optimal IoT-based improved deep learning model named optimization-driven deep belief neural network(ODBNN)is proposed in this article.In context,primarily image quality enhancement procedures like noise removal and contrast normalization are employed.Then the preprocessed image is subjected to feature extraction techniques in which intensity histogram,an average pixel of RGB channels,first-order statistics,Grey Level Co-Occurrence Matrix,Discrete Wavelet Transform,and Local Binary Pattern measures are extracted.After extracting these sets of features,the May Fly optimization technique is adopted to select the most relevant features.The selected features are fed into the proposed classification algorithm in terms of classifying similar input images into similar classes.The proposed model is evaluated in terms of accuracy,precision,recall,and f-measure.The investigation evident the performance of incorporating optimization techniques for medical image classification is better than conventional techniques.
文摘Software is unavoidable in software development and maintenance.In literature,many methods are discussed which fails to achieve efficient software bug detection and classification.In this paper,efficient Adaptive Deep Learning Model(ADLM)is developed for automatic duplicate bug report detection and classification process.The proposed ADLM is a combination of Conditional Random Fields decoding with Long Short-Term Memory(CRF-LSTM)and Dingo Optimizer(DO).In the CRF,the DO can be consumed to choose the efficient weight value in network.The proposed automatic bug report detection is proceeding with three stages like pre-processing,feature extraction in addition bug detection with classification.Initially,the bug report input dataset is gathered from the online source system.In the pre-processing phase,the unwanted information from the input data are removed by using cleaning text,convert data types and null value replacement.The pre-processed data is sent into the feature extraction phase.In the feature extraction phase,the four types of feature extraction method are utilized such as contextual,categorical,temporal and textual.Finally,the features are sent to the proposed ADLM for automatic duplication bug report detection and classification.The proposed methodology is proceeding with two phases such as training and testing phases.Based on the working process,the bugs are detected and classified from the input data.The projected technique is assessed by analyzing performance metrics such as accuracy,precision,Recall,F_Measure and kappa.
文摘Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning named deep belief network embedded with Softmax regress (DBNESR) as a natural source for obtaining additional, complementary hierarchical representations, which helps to relieve us from the complicated hand-crafted feature-design step. DBNESR first learns hierarchical representations of feature by greedy layer-wise unsupervised learning in a feed-forward (bottom-up) and back-forward (top-down) manner and then makes more efficient recognition with Softmax regress by supervised learning. As a comparison with the algorithms only based on supervised learning, we again propose and design many kinds of classifiers: BP, HBPNNs, RBF, HRBFNNs, SVM and multiple classification decision fusion classifier (MCDFC)—hybrid HBPNNs-HRBFNNs-SVM classifier. The conducted experiments validate: Firstly, the proposed DBNESR is optimal for face recognition with the highest and most stable recognition rates;second, the algorithm combining unsupervised and supervised learning has better effect than all supervised learning algorithms;third, hybrid neural networks have better effect than single model neural network;fourth, the average recognition rate and variance of these algorithms in order of the largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR;at last, it reflects hierarchical representations of feature by DBNESR in terms of its capability of modeling hard artificial intelligent tasks.
文摘The primary frequency response ability plays a crucial role in the rapid recovery and stability of the power grid when the grid is disturbed to generate a power imbalance.In order to predict the primary frequency control ability of power system,a new model is proposed based on deep belief networks.The key feature of the proposed model lies in the fact that it considers three key factors,i.e.,disturbance information,system state feature,and unit operation mode.Through this way,it predicts the primary frequency control ability of the power system accurately.The simulation results on real power system data verify the feasibility and accuracy of the proposed model.