期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework
1
作者 Yuchen Zhou Hongtao Huo +5 位作者 Zhiwen Hou Lingbin Bu Yifan Wang Jingyi Mao Xiaojun Lv Fanliang Bu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期537-563,共27页
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca... Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements. 展开更多
关键词 Graph neural networks hyperbolic graph convolutional neural networks deep graph convolutional neural networks message passing framework
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
2
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Monitoring Sea Fog over the Yellow Sea and Bohai Bay Based on Deep Convolutional Neural Network
3
作者 HUANG Bin GAO Shi-bo +2 位作者 YU Run-ling ZHAO Wei ZHOU Guan-bo 《Journal of Tropical Meteorology》 SCIE 2024年第3期223-229,共7页
In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a f... In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%. 展开更多
关键词 deep convolutional neural network satellite images sea fog detection multi-channel image fusion
下载PDF
Training deep convolution network with synthetic data for architectural morphological prototype classification 被引量:1
4
作者 Chenyi Cai Biao Li 《Frontiers of Architectural Research》 CSCD 2021年第2期304-316,共13页
The use of architectural morphological analysis and generative design is an important strategy to interpret current designs and to propose novel ones.Conventional morphological features are defined based on qualitativ... The use of architectural morphological analysis and generative design is an important strategy to interpret current designs and to propose novel ones.Conventional morphological features are defined based on qualitative descriptions or manually selected indicators,which include subjective bias,thus limiting generalizability.The lack of public architectural morphological datasets also leads to setbacks in data-driven morphological analysis.This study proposed a new method for generating topology-based synthetic data via a rule-based system and for encoding morphological information to promote morphological classification via deep learning.A deep convolution network,LeNet,which was modified in the output layer,was trained with synthetic data,including five spatial prototypes(central,linear,radial,cluster,and grid).The performance of the proposed method was validated on 40 practical architectural layouts.Compared to the ground truth,the proposed method provided an encouraging accuracy of 97.5%(39/40).Interestingly,the most possible mistakes of the LeNet were also understandable according to the architects intuitive perception.The proposed method considered the statistical and overall characteristics of the training samples.This work demonstrated the feasibility and effectiveness of the deep learning network trained with synthetic architectural patterns for morphological classification in practical architectural layouts.The findings of this work could serve as a basis for further morpho-topology studies and other social,building energy,and building structure studies related to spatial morphology. 展开更多
关键词 deep convolution network Architectural morphology Prototype classification Feature extraction Generative design
原文传递
Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning 被引量:14
5
作者 LU Heng FU Xiao +3 位作者 LIU Chao LI Long-guo HE Yu-xin LI Nai-wen 《Journal of Mountain Science》 SCIE CSCD 2017年第4期731-741,共11页
The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-hei... The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-height remote sensing technique, which is flexible, efficient with low cost and with high resolution, is widely applied to investing various resources. Based on this, a novel extraction method for cultivated land information based on Deep Convolutional Neural Network and Transfer Learning (DTCLE) was proposed. First, linear features (roads and ridges etc.) were excluded based on Deep Convolutional Neural Network (DCNN). Next, feature extraction method learned from DCNN was used to cultivated land information extraction by introducing transfer learning mechanism. Last, cultivated land information extraction results were completed by the DTCLE and eCognifion for cultivated land information extraction (ECLE). The location of the Pengzhou County and Guanghan County, Sichuan Province were selected for the experimental purpose. The experimental results showed that the overall precision for the experimental image 1, 2 and 3 (of extracting cultivated land) with the DTCLE method was 91.7%, 88.1% and 88.2% respectively, and the overall precision of ECLE is 9o.7%, 90.5% and 87.0%, respectively. Accuracy of DTCLE was equivalent to that of ECLE, and also outperformed ECLE in terms of integrity and continuity. 展开更多
关键词 Unmanned aerial vehicle Cultivated land deep convolutional neural network Transfer learning Information extraction
下载PDF
Digital Vision Based Concrete Compressive Strength Evaluating Model Using Deep Convolutional Neural Network 被引量:7
6
作者 Hyun Kyu Shin Yong Han Ahn +1 位作者 Sang Hyo Lee Ha Young Kim 《Computers, Materials & Continua》 SCIE EI 2019年第9期911-928,共18页
Compressive strength of concrete is a significant factor to assess building structure health and safety.Therefore,various methods have been developed to evaluate the compressive strength of concrete structures.However... Compressive strength of concrete is a significant factor to assess building structure health and safety.Therefore,various methods have been developed to evaluate the compressive strength of concrete structures.However,previous methods have several challenges in costly,time-consuming,and unsafety.To address these drawbacks,this paper proposed a digital vision based concrete compressive strength evaluating model using deep convolutional neural network(DCNN).The proposed model presented an alternative approach to evaluating the concrete strength and contributed to improving efficiency and accuracy.The model was developed with 4,000 digital images and 61,996 images extracted from video recordings collected from concrete samples.The experimental results indicated a root mean square error(RMSE)value of 3.56(MPa),demonstrating a strong feasibility that the proposed model can be utilized to predict the concrete strength with digital images of their surfaces and advantages to overcome the previous limitations.This experiment contributed to provide the basis that could be extended to future research with image analysis technique and artificial neural network in the diagnosis of concrete building structures. 展开更多
关键词 Concrete compressive strength deep learning deep convolutional neural network image-based evaluation building maintenance and management
下载PDF
MDCN:Modified Dense Convolution Network Based Disease Classification in Mango Leaves
7
作者 Chirag Chandrashekar K.P.Vijayakumar +1 位作者 K.Pradeep A.Balasundaram 《Computers, Materials & Continua》 SCIE EI 2024年第2期2511-2533,共23页
The most widely farmed fruit in the world is mango.Both the production and quality of the mangoes are hampered by many diseases.These diseases need to be effectively controlled and mitigated.Therefore,a quick and accu... The most widely farmed fruit in the world is mango.Both the production and quality of the mangoes are hampered by many diseases.These diseases need to be effectively controlled and mitigated.Therefore,a quick and accurate diagnosis of the disorders is essential.Deep convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification tasks.However,it requires large training datasets and several parameters that need careful adjustment.The proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango leaves.This model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning techniques.The data loader also builds mini-batches for training the models to reduce training time.Finally,optimization approaches help increase the overall model’s efficiency and lower computing costs.MDCN employed on the MangoLeafBD Dataset consists of a total of 4,000 images.Following the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput. 展开更多
关键词 Leaf disease detection deep convolutional neural networks transfer learning optimization MangoLeafBD Dataset
下载PDF
Predicting Concrete Compressive Strength Using Deep Convolutional Neural Network Based on Image Characteristics 被引量:2
8
作者 Sanghyo Lee Yonghan Ahn Ha Young Kim 《Computers, Materials & Continua》 SCIE EI 2020年第10期1-17,共17页
In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera an... In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN.Thereafter,training,validation,and testing of the DCNNs were performed based on the DSLR camera and microscope image data.Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy.The accuracy of the DSLR-derived image data was attributed to the relatively wider range of the DSLR camera,which was beneficial for extracting a larger number of features.Moreover,the DSLR camera procured more realistic images than the microscope.Thus,when the compressive strength of concrete was evaluated using the DCNN employing a DSLR camera,time and cost were reduced,whereas the usefulness increased.Furthermore,an indirect comparison of the accuracy of the DCNN with that of existing non-destructive methods for evaluating the strength of concrete proved the reliability of DCNN-derived concrete strength predictions.In addition,it was determined that the DCNN used for concrete strength evaluations in this study can be further expanded to detect and evaluate various deteriorative factors that affect the durability of structures,such as salt damage,carbonation,sulfation,corrosion,and freezing-thawing. 展开更多
关键词 deep convolutional neural network(DCNN) non-destructive testing(NDT) concrete compressive strength digital single-lens reflex(DSLR)camera MICROSCOPE
下载PDF
Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network 被引量:2
9
作者 Xiaoli Hao Xiaojuan Meng +2 位作者 Yueqin Zhang JinDong Xue Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2021年第11期2671-2685,共15页
In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de... In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms. 展开更多
关键词 Multi-class detection conditional deep convolution generative adversarial network conveyor belt tear skip-layer connection
下载PDF
Optimal Deep Dense Convolutional Neural Network Based Classification Model for COVID-19 Disease 被引量:1
10
作者 A.Sheryl Oliver P.Suresh +2 位作者 A.Mohanarathinam Seifedine Kadry Orawit Thinnukool 《Computers, Materials & Continua》 SCIE EI 2022年第1期2031-2047,共17页
Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images ... Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays.However,these methods suffer from biased results and inaccurate detection of the disease.So,the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network(OCOA-DDCNN)for COVID-19 prediction using CT images in IoT environment.The proposed methodology works on the basis of two stages such as pre-processing and prediction.Initially,CT scan images generated from prospective COVID-19 are collected from open-source system using IoT devices.The collected images are then preprocessed using Gaussian filter.Gaussian filter can be utilized in the removal of unwanted noise from the collected CT scan images.Afterwards,the preprocessed images are sent to prediction phase.In this phase,Deep Dense Convolutional Neural Network(DDCNN)is applied upon the pre-processed images.The proposed classifier is optimally designed with the consideration of Oppositional-basedChimp Optimization Algorithm(OCOA).This algorithm is utilized in the selection of optimal parameters for the proposed classifier.Finally,the proposed technique is used in the prediction of COVID-19 and classify the results as either COVID-19 or non-COVID-19.The projected method was implemented in MATLAB and the performances were evaluated through statistical measurements.The proposed method was contrasted with conventional techniques such as Convolutional Neural Network-Firefly Algorithm(CNN-FA),Emperor Penguin Optimization(CNN-EPO)respectively.The results established the supremacy of the proposed model. 展开更多
关键词 deep learning deep dense convolutional neural network covid-19 CT images chimp optimization algorithm
下载PDF
A Detection Method of Bolts on Axlebox Cover Based on Cascade Deep Convolutional Neural Network
11
作者 Ji Wang Liming Li +5 位作者 Shubin Zheng Shuguang Zhao Xiaodong Chai Lele Peng Weiwei Qi Qianqian Tong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1671-1706,共36页
This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image fe... This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image features is proposed for locating bolts on axlebox covers.And then,theA2-PFN is proposed according to the slender features of the marker lines for extracting more accurate marker lines regions of the bolts.Finally,a rectangular approximationmethod is proposed to regularize themarker line regions asaway tocalculate the angle of themarker line and plot all the angle values into an angle table,according to which the criteria of the angle table can determine whether the bolt with the marker line is in danger of loosening.Meanwhile,our improved algorithm is compared with the pre-improved algorithmin the object localization stage.The results show that our proposed method has a significant improvement in both detection accuracy and detection speed,where ourmAP(IoU=0.75)reaches 0.77 and fps reaches 16.6.And in the saliency detection stage,after qualitative comparison and quantitative comparison,our method significantly outperforms other state-of-the-art methods,where our MAE reaches 0.092,F-measure reaches 0.948 and AUC reaches 0.943.Ultimately,according to the angle table,out of 676 bolt samples,a total of 60 bolts are loose,69 bolts are at risk of loosening,and 547 bolts are tightened. 展开更多
关键词 Loosening detection cascade deep convolutional neural network object localization saliency detection
下载PDF
Millimeter Wave Massive MIMO Heterogeneous Networks Using Fuzzy-Based Deep Convolutional Neural Network (FDCNN)
12
作者 Hussain Alaaedi Masoud Sabaei 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期633-646,共14页
Enabling high mobility applications in millimeter wave(mmWave)based systems opens up a slew of new possibilities,including vehicle communi-cations in addition to wireless virtual/augmented reality.The narrow beam usag... Enabling high mobility applications in millimeter wave(mmWave)based systems opens up a slew of new possibilities,including vehicle communi-cations in addition to wireless virtual/augmented reality.The narrow beam usage in addition to the millimeter waves sensitivity might block the coverage along with the reliability of the mobile links.In this research work,the improvement in the quality of experience faced by the user for multimedia-related applications over the millimeter-wave band is investigated.The high attenuation loss in high frequencies is compensated with a massive array structure named Multiple Input and Multiple Output(MIMO)which is utilized in a hyperdense environment called heterogeneous networks(HetNet).The optimization problem which arises while maximizing the Mean Opinion Score(MOS)is analyzed along with the QoE(Quality of Experience)metric by considering the Base Station(BS)powers in addition to the needed Quality of Service(QoS).Most of the approaches related to wireless network communication are not suitable for the millimeter-wave band because of its problems due to high complexity and its dynamic nature.Hence a deep reinforcement learning framework is developed for tackling the same opti-mization problem.In this work,a Fuzzy-based Deep Convolutional Neural Net-work(FDCNN)is proposed in addition to a Deep Reinforcing Learning Framework(DRLF)for extracting the features of highly correlated data.The investigational results prove that the proposed method yields the highest satisfac-tion to the user by increasing the number of antennas in addition with the small-scale antennas at the base stations.The proposed work outperforms in terms of MOS with multiple antennas. 展开更多
关键词 Multiple-input and multiple-output quality of experience quality of service(qos) fuzzy-based deep convolutional neural network
下载PDF
Research on single image super-resolution based on very deep super-resolution convolutional neural network
13
作者 HUANG Zhangyu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期276-283,共8页
Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieve... Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieved by a deep learning-based method.By constructing a very deep super-resolution convolutional neural network(VDSRCNN),the LR images can be improved to HR images.This study mainly achieves two objectives:image super-resolution(ISR)and deblurring the image from VDSRCNN.Firstly,by analyzing ISR,we modify different training parameters to test the performance of VDSRCNN.Secondly,we add the motion blurred images to the training set to optimize the performance of VDSRCNN.Finally,we use image quality indexes to evaluate the difference between the images from classical methods and VDSRCNN.The results indicate that the VDSRCNN performs better in generating HR images from LR images using the optimized VDSRCNN in a proper method. 展开更多
关键词 single image super-resolution(SISR) very deep super-resolution convolutional neural network(VDSRCNN) motion blurred image image quality index
下载PDF
Multi-Classification Network for Identifying COVID-19 Cases Using Deep Convolutional Neural Networks
14
作者 Sajib Sarker Ling Tan +3 位作者 Wenjie Ma Shanshan Rong Osibo Benjamin Kwapong Oscar Famous Darteh 《Journal on Internet of Things》 2021年第2期39-51,共13页
The novel coronavirus 2019(COVID-19)rapidly spreading around the world and turns into a pandemic situation,consequently,detecting the coronavirus(COVID-19)affected patients are now the most critical task for medical s... The novel coronavirus 2019(COVID-19)rapidly spreading around the world and turns into a pandemic situation,consequently,detecting the coronavirus(COVID-19)affected patients are now the most critical task for medical specialists.The deficiency of medical testing kits leading to huge complexity in detecting COVID-19 patients worldwide,resulting in the number of infected cases is expanding.Therefore,a significant study is necessary about detecting COVID-19 patients using an automated diagnosis method,which hinders the spreading of coronavirus.In this paper,the study suggests a Deep Convolutional Neural Network-based multi-classification framework(COV-MCNet)using eight different pre-trained architectures such as VGG16,VGG19,ResNet50V2,DenseNet201,InceptionV3,MobileNet,InceptionResNetV2,Xception which are trained and tested on the X-ray images of COVID-19,Normal,Viral Pneumonia,and Bacterial Pneumonia.The results from 4-class(Normal vs.COVID-19 vs.Viral Pneumonia vs.Bacterial Pneumonia)demonstrated that the pre-trained model DenseNet201 provides the highest classification performance(accuracy:92.54%,precision:93.05%,recall:92.81%,F1-score:92.83%,specificity:97.47%).Notably,the DenseNet201(4-class classification)pre-trained model in the proposed COV-MCNet framework showed higher accuracy compared to the rest seven models.Important to mention that the proposed COV-MCNet model showed comparatively higher classification accuracy based on the small number of pre-processed datasets that specifies the designed system can produce superior results when more data become available.The proposed multi-classification network(COV-MCNet)significantly speeds up the existing radiology based method which will be helpful for the medical community and clinical specialists to early diagnosis the COVID-19 cases during this pandemic. 展开更多
关键词 COVID-19 chest X-ray images deep convolutional neural network COV-MCNet deep learning
下载PDF
An Optimized Deep Residual Network with a Depth Concatenated Block for Handwritten Characters Classification 被引量:4
15
作者 Gibrael Abosamra Hadi Oqaibi 《Computers, Materials & Continua》 SCIE EI 2021年第7期1-28,共28页
Even though much advancements have been achieved with regards to the recognition of handwritten characters,researchers still face difficulties with the handwritten character recognition problem,especially with the adv... Even though much advancements have been achieved with regards to the recognition of handwritten characters,researchers still face difficulties with the handwritten character recognition problem,especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset(EMNIST).The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability.Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset.The presence of intra-class variability is mainly due to different shapes written by different writers for the same character.In this research,we have optimized a deep residual network to achieve higher accuracy vs.the published state-of-the-art results.This approach is mainly based on the prebuilt deep residual network model ResNet18,whose architecture has been enhanced by using the optimal number of residual blocks and the optimal size of the receptive field of the first convolutional filter,the replacement of the first max-pooling filter by an average pooling filter,and the addition of a drop-out layer before the fully connected layer.A distinctive modification has been introduced by replacing the final addition layer with a depth concatenation layer,which resulted in a novel deep architecture having higher accuracy vs.the pure residual architecture.Moreover,the dataset images’sizes have been adjusted to optimize their visibility in the network.Finally,by tuning the training hyperparameters and using rotation and shear augmentations,the proposed model outperformed the state-of-the-art models by achieving average accuracies of 95.91%and 90.90%for the Letters and Balanced dataset sections,respectively.Furthermore,the average accuracies were improved to 95.9%and 91.06%for the Letters and Balanced sections,respectively,by using a group of 5 instances of the trained models and averaging the output class probabilities. 展开更多
关键词 Handwritten character classification deep convolutional neural networks residual networks GoogLeNet ResNet18 DenseNet DROP-OUT L2 regularization factor learning rate
下载PDF
Influence of image data set noise on classification with a convolutional network 被引量:2
16
作者 Wei Tao Shuai Liguo Zhang Yulu 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期51-56,共6页
To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different typ... To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different types and proportions of data noise are added to two reference data sets, Cifar-10 and Cifar-100. Then, this data containing noise is used to train deep convolutional models and classify the validation data set. The experimental results show that the noise in the data set has obvious adverse effects on deep convolutional network classification models. The adverse effects of random noise are small, but the cross-category noise among categories can significantly reduce the recognition ability of the model. Therefore, a solution is proposed to improve the quality of the data sets that are mixed into a single noise category. The model trained with a data set containing noise is used to evaluate the current training data and reclassify the categories of the anomalies to form a new data set. Repeating the above steps can greatly reduce the noise ratio, so the influence of cross-category noise can be effectively avoided. 展开更多
关键词 image recognition data set noise deep convolutional network filtering of cross-category noise
下载PDF
Vehicle Detection Based on Visual Saliency and Deep Sparse Convolution Hierarchical Model 被引量:4
17
作者 CAI Yingfeng WANG Hai +2 位作者 CHEN Xiaobo GAO Li CHEN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期765-772,共8页
Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high ... Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle. 展开更多
关键词 vehicle detection visual saliency deep model convolution neural network
下载PDF
A Deep Convolutional Architectural Framework for Radiograph Image Processing at Bit Plane Level for Gender&Age Assessment 被引量:1
18
作者 N.Shobha Rani M.Chandrajith +1 位作者 B.R.Pushpa B.J.Bipin Nair 《Computers, Materials & Continua》 SCIE EI 2020年第2期679-694,共16页
Assessing the age of an individual via bones serves as a fool proof method in true determination of individual skills.Several attempts are reported in the past for assessment of chronological age of an individual base... Assessing the age of an individual via bones serves as a fool proof method in true determination of individual skills.Several attempts are reported in the past for assessment of chronological age of an individual based on variety of discriminative features found in wrist radiograph images.The permutation and combination of these features realized satisfactory accuracies for a set of limited groups.In this paper,assessment of gender for individuals of chronological age between 1-17 years is performed using left hand wrist radiograph images.A fully automated approach is proposed for removal of noise persisted due to non-uniform illumination during the process of radiograph acquisition process.Subsequent to this a computational technique for extraction of wrist region is proposed using operations on specific bit planes of image.A framework called GeNet of deep convolutional neural network is applied for classification of extracted wrist regions into male and female.The experimentations are conducted on the datasets of Radiological Society of North America(RSNA)of about 12442 images.Efficiency of preprocessing and segmentation techniques resulted into a correlation of about 99.09%.Performance of GeNet is evaluated on the extracted wrist regions resulting into an accuracy of 82.18%. 展开更多
关键词 Bit plane processing automated segmentation deep convolutional network
下载PDF
A Step-Based Deep Learning Approach for Network Intrusion Detection
19
作者 Yanyan Zhang Xiangjin Ran 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1231-1245,共15页
In the network security field,the network intrusion detection system(NIDS)is considered one of the critical issues in the detection accuracy andmissed detection rate.In this paper,amethod of two-step network intrusion... In the network security field,the network intrusion detection system(NIDS)is considered one of the critical issues in the detection accuracy andmissed detection rate.In this paper,amethod of two-step network intrusion detection on the basis of GoogLeNet Inception and deep convolutional neural networks(CNNs)models is proposed.The proposed method used the GoogLeNet Inception model to identify the network packets’binary problem.Subsequently,the characteristics of the packets’raw data and the traffic features are extracted.The CNNs model is also used to identify the multiclass intrusions by the network packets’features.In the experimental results,the proposed method shows an improvement in the identification accuracy,where it achieves up to 99.63%.In addition,the missed detection rate is reduced to be 0.1%.The results prove the high performance of the proposed method in enhancing the NIDS’s reliability. 展开更多
关键词 network intrusion detection system deep convolutional neural networks GoogLeNet Inception model step-based intrusion detection
下载PDF
Deep Neural Network Based Detection and Segmentation of Ships for Maritime Surveillance
20
作者 Kyamelia Roy Sheli Sinha Chaudhuri +1 位作者 Sayan Pramanik Soumen Banerjee 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期647-662,共16页
In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficien... In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system. 展开更多
关键词 Auto-encoder computer vision deep convolution neural network satellite imagery semantic segmentation ship detection
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部