期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
Project Assessment in Offshore Software Maintenance Outsourcing Using Deep Extreme Learning Machines
1
作者 Atif Ikram Masita Abdul Jalil +6 位作者 Amir Bin Ngah Saqib Raza Ahmad Salman Khan Yasir Mahmood Nazri Kama Azri Azmi Assad Alzayed 《Computers, Materials & Continua》 SCIE EI 2023年第1期1871-1886,共16页
Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different w... Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment. 展开更多
关键词 Software outsourcing deep extreme learning machine(delm) machine learning(ML) extreme learning machine ASSESSMENT
下载PDF
基于改进DELM在不同放电工况下的锂电池SOH预测方法研究
2
作者 钟晓旭 李岚 《绵阳师范学院学报》 2024年第5期38-45,57,共9页
锂电池性能受到多种因素的影响,尤其在不同放电工况下其健康状态(SOH)预测难度极大增加.因此,研究以基于深度极限学习机为基础的锂电池SOH预测方法为基础,利用改进鲸鱼优化算法解决深度极限学习机中存在的随机权重和偏置问题,旨在提高... 锂电池性能受到多种因素的影响,尤其在不同放电工况下其健康状态(SOH)预测难度极大增加.因此,研究以基于深度极限学习机为基础的锂电池SOH预测方法为基础,利用改进鲸鱼优化算法解决深度极限学习机中存在的随机权重和偏置问题,旨在提高锂电池SOH预测的精确率.对比实验结果表明,研究提出的预测方法算法的误差在[-0.02,0.04]之间,平均精确率达到96.23%,相比利用麻雀搜索算法、灰狼优化算法,改进的深度极限学习机算法分别提升了9.67%和5.05%.平均召回率为90.83%,平均误报率为3.75%.此外,高负载工况下,100次充放电循环后锂电池SOH值仅有0.221,下降幅度最大.不同工况下研究提出的预测方法平均精确率达到96.07%.研究提出的锂电池健康状态预测方法对于提高电池性能、延长寿命、提高安全性和降低环境影响具有重要的实际意义. 展开更多
关键词 锂电池 健康状态预测 深度极限学习机 鲸鱼优化算法
下载PDF
基于场因子分解的xDeepFM推荐模型
3
作者 李子杰 张姝 +2 位作者 欧阳昭相 王俊 吴迪 《应用科学学报》 CAS CSCD 北大核心 2024年第3期513-524,共12页
极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推... 极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推荐场景下的表现,提出一种基于场因子分解的xDeepFM改进模型。该模型通过场信息增强了特征的表达能力,并建立了多个交叉压缩网络以学习高阶组合特征。最后分析了用户场、项目场设定的合理性,并在3个不同规模的MovieLens系列数据集上通过受试者工作特征曲线下面积、对数似然损失指标进行性能评估,验证了该改进模型的有效性。 展开更多
关键词 推荐算法 极深因子分解机 场因子分解 深度学习
下载PDF
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
4
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
下载PDF
基于VMDT-POA-DELM-GPR的两阶段短期负荷预测 被引量:1
5
作者 王强 刘宏伟 聂子凡 《国外电子测量技术》 2024年第1期101-109,共9页
针对传统负荷预测方法精度不高的问题,为准确捕捉到负荷数据波动的规律,提出了一种两阶段负荷预测方法。第1阶段首先用变分模态分解(VMD)对原始负荷序列进行分解,得到分解处理后的残差分量,再采用时变滤波经验模态分解(TVF-EMD)方法进... 针对传统负荷预测方法精度不高的问题,为准确捕捉到负荷数据波动的规律,提出了一种两阶段负荷预测方法。第1阶段首先用变分模态分解(VMD)对原始负荷序列进行分解,得到分解处理后的残差分量,再采用时变滤波经验模态分解(TVF-EMD)方法进行特征提取;然后对全部子序列分别建立深度极限学习机(DELM)模型,同时利用鹈鹕优化算法(POA)进行参数寻优,叠加各子序列的预测值得到初始负荷预测值。第2阶段采用POA-DELM模型对误差分量进行预测;然后将第一阶段中所有子序列预测值和误差预测值作为特征输入到高斯过程回归(GPR)模型中,得到负荷最终的预测结果。结果表明,两阶段模型的均方根误差(RMSE)、平均绝对误差(MAE)分别为对比模型的4%~77%、4%~76%,而平均百分比误差(MAPE)仅为0.0678%,可有效提高电力负荷的预测精度。 展开更多
关键词 变分模态分解 时变滤波经验模态分解 鹈鹕优化算法 深度极限学习机 两阶段负荷预测
下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
6
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
基于ShuffleNet-DELM的轴承故障诊断研究
7
作者 李睿智 杨芳华 +1 位作者 张伟 周旗开 《中国测试》 CAS 北大核心 2024年第6期42-48,共7页
滚动轴承信号是一种典型的非平稳、非线性数据,深度学习模型能够有效提取此类数据特征。为获得更高的精度,深度学习模型不断增加计算量和参数规模,而工程实际中计算机硬件能力和可供训练的数据有限,更注重较快的响应速度和泛化能力。为... 滚动轴承信号是一种典型的非平稳、非线性数据,深度学习模型能够有效提取此类数据特征。为获得更高的精度,深度学习模型不断增加计算量和参数规模,而工程实际中计算机硬件能力和可供训练的数据有限,更注重较快的响应速度和泛化能力。为解决此类矛盾,提出一种基于ShuffleNet-DELM的轴承故障诊断方法。首先将一维的时序信号变换为二维频域张量,再使用改进的ShuffleNetV2模型提取特征,最后经由深度极限学习机(deep extreme learning machine,DELM)方法进行分类,在不同工况的滚动轴承数据集合上取得95.47%的平均准确率。结果表明:该方法响应速度快,能够进一步提高ShuffleNetV2模型对轴承故障的分类精度和泛化能力,有较好的实用价值。 展开更多
关键词 深度学习 ShuffleNet 深度极限学习机 轴承
下载PDF
基于CIFE-FOA-DELM的SCR脱硝入口NO_(x)浓度预测方法研究
8
作者 董威 林子杰 王雅昀 《电力科技与环保》 2024年第3期313-320,共8页
针对脱硝入口NO_(x)浓度监测值作为脱硝前馈输入导致的喷氨控制滞后问题,提出了基于炉膛参数的脱硝入口NO_(x)浓度CIFE-FOA-DELM预测方法。采用互信息特征选择方法进行预测模型的特征变量筛选;引入经果蝇寻优算法优化的深度极限学习建立... 针对脱硝入口NO_(x)浓度监测值作为脱硝前馈输入导致的喷氨控制滞后问题,提出了基于炉膛参数的脱硝入口NO_(x)浓度CIFE-FOA-DELM预测方法。采用互信息特征选择方法进行预测模型的特征变量筛选;引入经果蝇寻优算法优化的深度极限学习建立NO_(x)浓度预测模型;并利用某660 MW火电机组历史运行数据进行模型验证,与反向传播、支持向量机、深度极限学习机、FOA-SVM模型的预测结果进行对比。结果表明:CIFE-FOA-DELM预测方法具备更高的预测精度,平均绝对百分比误差SMAPE、均方根误差SRMSE、拟合优度R2分别为0.261%、1.384、0.965。与CEMS监测数据对比,脱硝入口NO_(x)浓度预测值提前了180 s,有利于解决喷氨控制滞后问题。 展开更多
关键词 SCR 脱硝入口NO_(x)浓度 CIFE-FOA-delm 互信息特征选择 果蝇优化算法 深度极限学习机 喷氨控制
下载PDF
基于ILSO-DELM的燃气轮机压气机故障预警方法
9
作者 马梦甜 茅大钧 蒋欢春 《电工电气》 2024年第5期63-68,共6页
压气机结构复杂,运行特性为非线性的特点加大了燃气轮机压气机故障预警的难度,为了提高燃气轮机压气机故障预警能力,提出了一种基于改进的狮群优化算法(ILSO)优化深度极限学习机(DELM)的故障预警方法。通过皮尔逊相关分析得到与预警参... 压气机结构复杂,运行特性为非线性的特点加大了燃气轮机压气机故障预警的难度,为了提高燃气轮机压气机故障预警能力,提出了一种基于改进的狮群优化算法(ILSO)优化深度极限学习机(DELM)的故障预警方法。通过皮尔逊相关分析得到与预警参数相关性高的测点,构建ILSO-DELM预测模型,得到正常状态下预警参数的绝对值,通过参数估计确定阈值,根据残差绝对值是否超过预警线来间接判断压气机的运行情况。以上海某燃机电厂的运行数据进行分析,通过验证表明:该方法能够对压气机故障提前预警,并且相比于DELM模型预测精度更高。 展开更多
关键词 压气机 深度极限学习机 狮群优化算法 故障预警
下载PDF
基于CEEMDAN-IGWO-DELM的现货市场电价混合预测算法
10
作者 恩格贝 李玉璐 张岩 《河北电力技术》 2024年第4期1-9,共9页
准确预测现货市场电价对于保护电力市场参与者的利益具有重要意义。目前,大量的可再生能源参与现货市场交易,使得预测现货市场电价变得极具挑战性。为此,本文提出了一种基于分解-优化-集成的混合电价预测模型。首先,使用完全集合经验模... 准确预测现货市场电价对于保护电力市场参与者的利益具有重要意义。目前,大量的可再生能源参与现货市场交易,使得预测现货市场电价变得极具挑战性。为此,本文提出了一种基于分解-优化-集成的混合电价预测模型。首先,使用完全集合经验模态分解方法将原始电价时间序列进行分解;然后,采用Cat混沌映射策略、停滞检测策略和高斯Levy扰动策略克服灰狼优化算法陷入局部最优问题,提高了种群多样性;其次,利用改进的灰狼优化算法对深度极限状态机隐层参数进行优化并构造现货电价预测模型,最后,通过仿真实验对所提方法进行分析和验证。结果表明所提出的方法有效地改善了预测模型的精度。 展开更多
关键词 现货市场电价预测 深度极限学习机 灰狼优化算法 高斯-Levy变异策略
下载PDF
基于EG-SSMA-DELM的数控铣床刀具RUL预测研究 被引量:3
11
作者 张天骁 谷艳玲 安文杰 《机电工程》 CAS 北大核心 2023年第9期1464-1470,共7页
在工件的加工过程中,刀具失效会造成工件报废和关键部件损坏等问题,为此,提出了一种基于精英反向学习与黄金正弦优化黏菌算法结合深度极限学习机(EG-SSMA-DELM)的刀具磨损剩余寿命预测模型。首先,在黏菌算法(SMA)中,采用精英反向学习(EO... 在工件的加工过程中,刀具失效会造成工件报废和关键部件损坏等问题,为此,提出了一种基于精英反向学习与黄金正弦优化黏菌算法结合深度极限学习机(EG-SSMA-DELM)的刀具磨损剩余寿命预测模型。首先,在黏菌算法(SMA)中,采用精英反向学习(EOBL)与黄金正弦(GSA)算法优化初始黏菌种群,提高了初始种群的多样性,改进了初始SMA搜索个体位置的更新方式,提高了算法的收敛速度与全局搜索能力,得到了最优参数;然后,利用改进的SMA算法,对深度极限学习机(DELM)中编码器的偏置与输入权重进行了联合优化,定义了不同数量的隐藏层神经元,利用ReLU激活函数对DELM的参数进行了理想排列;最后,根据最优参数,将投影特征输入DELM中进行了训练和预测,从而对刀具进行了剩余使用寿命预测。研究结果表明:相比于经典的深度极限学习机方法,EG-SSMA-DELM方法的均方根误差(RMSE)平均下降了19.60%,预测精度提高了16.00%;与其他深度学习算法相比,该算法模型具有更好的可行性、单调性和更强的鲁棒性。该算法模型对实际工程刀具磨损剩余寿命研究有一定的应用价值。 展开更多
关键词 剩余使用寿命 刀具寿命预测 精英反向学习 黄金正弦算法 黏菌算法 深度极限学习机
下载PDF
COVID19 Classification Using CT Images via Ensembles of Deep Learning Models 被引量:1
12
作者 Abdul Majid Muhammad Attique Khan +4 位作者 Yunyoung Nam Usman Tariq Sudipta Roy Reham R.Mostafa Rasha H.Sakr 《Computers, Materials & Continua》 SCIE EI 2021年第10期319-337,共19页
The recent COVID-19 pandemic caused by the novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),has had a significant impact on human life and the economy around the world.A reverse transcript... The recent COVID-19 pandemic caused by the novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),has had a significant impact on human life and the economy around the world.A reverse transcription polymerase chain reaction(RT-PCR)test is used to screen for this disease,but its low sensitivity means that it is not sufficient for early detection and treatment.As RT-PCR is a time-consuming procedure,there is interest in the introduction of automated techniques for diagnosis.Deep learning has a key role to play in the field of medical imaging.The most important issue in this area is the choice of key features.Here,we propose a set of deep learning features based on a system for automated classification of computed tomography(CT)images to identify COVID-19.Initially,this method was used to prepare a database of three classes:Pneumonia,COVID19,and Healthy.The dataset consisted of 6000 CT images refined by a hybrid contrast stretching approach.In the next step,two advanced deep learning models(ResNet50 and DarkNet53)were fine-tuned and trained through transfer learning.The features were extracted from the second last feature layer of both models and further optimized using a hybrid optimization approach.For each deep model,the Rao-1 algorithm and the PSO algorithm were combined in the hybrid approach.Later,the selected features were merged using the new minimum parallel distance non-redundant(PMDNR)approach.The final fused vector was finally classified using the extreme machine classifier.The experimental process was carried out on a set of prepared data with an overall accuracy of 95.6%.Comparing the different classification algorithms at the different levels of the features demonstrated the reliability of the proposed framework. 展开更多
关键词 COVID19 PREPROCESSING deep learning information fusion firefly algorithm extreme learning machine
下载PDF
基于EMD-AO-DELM的光伏功率预测算法 被引量:1
13
作者 曹哲 赵葵银 +3 位作者 王田宇 黄玮杰 司孟娇 林国汉 《湖南工程学院学报(自然科学版)》 2023年第4期6-14,共9页
为提高光伏功率预测精确度,提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-天鹰优化器(Aquila Optimizer,AO)-深度极限学习机(Deep Extreme Learning Machine,DELM)的组合光伏功率预测模型.该算法对光伏发电影响因素进... 为提高光伏功率预测精确度,提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-天鹰优化器(Aquila Optimizer,AO)-深度极限学习机(Deep Extreme Learning Machine,DELM)的组合光伏功率预测模型.该算法对光伏发电影响因素进行分析筛选,选出与光伏输出功率高度相关的因素作为输入变量,并采用经验模态分解(EMD)将光伏原始功率数据分解为多个特征模态函数(Intrinsic Mode Function,IMF).然后,将分解得到的IMF分量分别输入DELM预测模型,同时通过AO优化算法对DELM初始输入权重进行优化,从而提高深度极限学习机的泛化能力.最后,将各IMF分量预测结果叠加求和得到最终预测结果.通过仿真结果表明,本文提出的EMD-AO-DELM预测模型,相较于单一DELM模型具有更好的预测精度,证明了所提方法的有效性. 展开更多
关键词 光伏发电 预测算法 经验模态分解 深度极限学习机
下载PDF
Data Fusion-Based Machine Learning Architecture for Intrusion Detection
14
作者 Muhammad Adnan Khan Taher M.Ghazal +1 位作者 Sang-Woong Lee Abdur Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第2期3399-3413,共15页
In recent years,the infrastructure of Wireless Internet of Sensor Networks(WIoSNs)has been more complicated owing to developments in the internet and devices’connectivity.To effectively prepare,control,hold and optim... In recent years,the infrastructure of Wireless Internet of Sensor Networks(WIoSNs)has been more complicated owing to developments in the internet and devices’connectivity.To effectively prepare,control,hold and optimize wireless sensor networks,a better assessment needs to be conducted.The field of artificial intelligence has made a great deal of progress with deep learning systems and these techniques have been used for data analysis.This study investigates the methodology of Real Time Sequential Deep Extreme LearningMachine(RTS-DELM)implemented to wireless Internet of Things(IoT)enabled sensor networks for the detection of any intrusion activity.Data fusion is awell-knownmethodology that can be beneficial for the improvement of data accuracy,as well as for the maximizing of wireless sensor networks lifespan.We also suggested an approach that not only makes the casting of parallel data fusion network but also render their computations more effective.By using the Real Time Sequential Deep Extreme Learning Machine(RTSDELM)methodology,an excessive degree of reliability with a minimal error rate of any intrusion activity in wireless sensor networks is accomplished.Simulation results show that wireless sensor networks are optimized effectively to monitor and detect any malicious or intrusion activity through this proposed approach.Eventually,threats and a more general outlook are explored. 展开更多
关键词 Wireless internet of sensor networks machine learning deep extreme learning machine artificial intelligence data fusion
下载PDF
考虑位移滞后效应的降雨型滑坡SSA-DELM位移预测模型研究
15
作者 廖兴灵 简文彬 +1 位作者 樊秀峰 章德生 《水利与建筑工程学报》 2023年第2期128-136,共9页
针对东南丘陵山地降雨型滑坡变形发展特征,现有滑坡预测模型应用存在局限,结合滑坡变形特点研究基于智能算法的滑坡预测模型。以福建安溪尧山滑坡为例,选取2019年9月至2022年6月滑坡监测数据进行研究,采用集对分析、灰关联法、麻雀搜索... 针对东南丘陵山地降雨型滑坡变形发展特征,现有滑坡预测模型应用存在局限,结合滑坡变形特点研究基于智能算法的滑坡预测模型。以福建安溪尧山滑坡为例,选取2019年9月至2022年6月滑坡监测数据进行研究,采用集对分析、灰关联法、麻雀搜索算法及深度极限学习机对滑坡位移进行预测,提出了一种考虑滑坡位移滞后时间基于深度学习的滑坡位移预测模型。结果表明:SSA-DELM模型的MAE、MAPE、RMSE相较于已有的BP神经网络、SVM模型均更小,同时模型结合了滑坡影响因子以及水位-位移滞后特征,具有明确的物理意义,位移预测效果较好且精度较高,可推广应用于类似的滑坡位移预测中。 展开更多
关键词 位移预测 滞后 集对分析 麻雀搜索算法 深度极限学习机
下载PDF
Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images
16
作者 P.S.Arthy A.Kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1381-1393,共13页
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the... With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,thefinal stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models. 展开更多
关键词 machine and deep learning algorithm capsule networks residual networks extreme learning machines correlation features
下载PDF
Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images
17
作者 P.S.Arthy A.Kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2959-2971,共13页
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the... With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,the final stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models. 展开更多
关键词 machine and deep learning algorithm capsule networks residual networks extreme learning machines correlation features
下载PDF
大数据背景下基于PCA-DELM的入侵检测研究
18
作者 王振东 王思如 +1 位作者 王俊岭 李大海 《软件导刊》 2023年第12期185-191,共7页
恶意攻击类型及形式不断变化,攻击量逐渐增加,传统神经网络模型架构在提高模型精度、减少模型计算量、提高推理速度等方面起着重要作用,然而,传统模型架构搜索时需消耗大量计算资源,且泛化能力不高。对此,需提出针对大数据背景下网络攻... 恶意攻击类型及形式不断变化,攻击量逐渐增加,传统神经网络模型架构在提高模型精度、减少模型计算量、提高推理速度等方面起着重要作用,然而,传统模型架构搜索时需消耗大量计算资源,且泛化能力不高。对此,需提出针对大数据背景下网络攻击的解决方案。基于深度学习在网络安全方面的应用,在入侵检测领域结合主成分分析方法(PCA)并使用深度极限学习机(DELM)进行研究,设计一种轻量级神经网络PCA-DELM,在保留传统神经网络模型架构优点的同时,减小计算资源,提升泛化能力。仿真结果表明,相较于其他算法,优化后的轻量级神经网络模型PCA-DELM在不同的数据集上能显著提高入侵检测能力,加快检测速率。 展开更多
关键词 入侵检测 网络安全 深度极限学习机 主成分分析 深度学习
下载PDF
基于数据驱动的配电网无功优化 被引量:4
19
作者 蔡昌春 程增茂 +2 位作者 张关应 李源佳 储云迪 《电网技术》 EI CSCD 北大核心 2024年第1期373-382,共10页
传统无功电压控制由于分布式电源、储能以及柔性负荷的接入面临计算速度和精度上的挑战。该文提出了一种基于数据驱动的配电网无功电压优化方法,通过跟踪实际系统的运行参数,实现无功电压的主动控制。在极限学习机中引入自动编码器构建... 传统无功电压控制由于分布式电源、储能以及柔性负荷的接入面临计算速度和精度上的挑战。该文提出了一种基于数据驱动的配电网无功电压优化方法,通过跟踪实际系统的运行参数,实现无功电压的主动控制。在极限学习机中引入自动编码器构建深度学习机制,利用自动编码器建立极限学习机输入-输出的直接耦合关系,实现无监督学习和有监督学习有机结合,缩短训练模型的迭代过程;利用蒙特卡洛法基于分布式电源、负荷预测信息构建配电网运行场景,利用深度极限学习机挖掘运行场景优化运行与无功调压设备状态间的内在联系,建立电网运行场景与系统无功调压策略的映射关系。该文提出的基于数据驱动的无功优化方法不依赖实际系统潮流计算,能够实现配电网运行状态的跟踪和无功调节设备的优化调度,为配电网无功电压的主动控制打下基础。 展开更多
关键词 数据驱动 无功优化 深度极限学习机 自动编码器 主动控制
下载PDF
改进海鸥算法优化DELM的入侵检测方法研究
20
作者 罗俊星 《绵阳师范学院学报》 2023年第5期81-90,共10页
针对深度极限学习机DELM的输入权重和隐藏层偏置的随机初始化,从而影响入侵检测性能的问题,提出基于改进海鸥算法优化DELM的入侵检测方法ESCSOA-DELM.先运用精英反向策略初始化海鸥算法,再用改进正余弦算法和精英反向策略更新精英海鸥位... 针对深度极限学习机DELM的输入权重和隐藏层偏置的随机初始化,从而影响入侵检测性能的问题,提出基于改进海鸥算法优化DELM的入侵检测方法ESCSOA-DELM.先运用精英反向策略初始化海鸥算法,再用改进正余弦算法和精英反向策略更新精英海鸥位置,以此对DELM的输入层权重和隐藏层偏置参数优化.通过标准测试函数,分析比较ESCSOA与SOA、GWO、PSO算法,验证了ESCSOA算法改进的有效性.基于天然气管道入侵数据集的实验结果表明,ESCSOA-DELM模型在准确率、误报率、漏报率、F1和ROC曲线等评价指标上优于其他模型,体现了较理想的入侵检测性能. 展开更多
关键词 入侵检测 海鸥算法 深度极限学习机 精英反向策略 正余弦算法
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部