Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t...Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.展开更多
Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the ra...Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.展开更多
Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of c...Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of confined aquifer and dewatering duration. In order to reduce engineering cost and diminish detrimental effect on ambient surrounding, optimization design target function based on the control of confined water drawdown and four restriction requisitions based on the control of safe water level, resistance to throwing up from the bottom of foundation pit, avoiding excessively great subsidence and unequal surface subsidence are proposed. A deep well dewatering project in the deep foundation pit is optimally designed. The calculated results including confined water level drawdown and surface subsidence are in close agreement with the measured results, and the optimization design can effectively control both surface subsidence outside foundation pit and unequal subsidence as a result of dewatering.展开更多
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio...In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.展开更多
A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missin...A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation(horizontal hydraulic conductivity K_H = 16 m/d and vertical hydraulic conductivity K_V = S m/d). The difference between K_H and K_V indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme,in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of-28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.展开更多
The thinking of co evolution is applied to the optimization of retaining and protecting structure for deep foundation excavation, and the system of optimization of anchored row piles for deep foundation pit has been a...The thinking of co evolution is applied to the optimization of retaining and protecting structure for deep foundation excavation, and the system of optimization of anchored row piles for deep foundation pit has been already developed successfully. For the co evolution algorithm providing an evolutionary mechanism to simulate ever changing problem space, it is an optimization algorithm that has high performance, especially applying to the optimization of complicated system of retaining and protecting for deep foundation pit. It is shown by many engineering practices that the co evolution algorithm has obvious optimization effect, so it can be an important method of optimization of retaining and protecting for deep foundation pit. Here the authors discuss the co evolution model, object function, all kinds of constraint conditions and their disposal methods, and several key techniques of system realization.展开更多
To investigate the effect of deep foundation pit excavation on the stability of retaining structure, a subway stationin the city of Jinan was selected as a project, and a FLAC3D-based three dimensional model was devel...To investigate the effect of deep foundation pit excavation on the stability of retaining structure, a subway stationin the city of Jinan was selected as a project, and a FLAC3D-based three dimensional model was developed fornumerical simulation. The horizontal displacement of the retaining structure, the axial force of the support, andthe vertical displacement of the column were studied and compared to the collected data from the field. The findingsindicate that when the foundation pit is excavated, the maximum deformation of the retaining structure progressivelydecreases from the top, the distortion of the retaining structure gradually rises, and the final maximumdeformation is around 17 meters deep. In each layer of support, the largest axial force support is located in thefirst reinforced concrete support;the uplift of the pit bottom caused by soil unloading plays a primary role in thevertical displacement of the column, and the column exhibits an upward trend under all construction conditions.When compared to the measured data, the generated findings are comparable and the fluctuation trend is extremelyconsistent. The findings of this article may give technical direction for the development of subway stationswith a comparable engineering basis.展开更多
Taking the deep foundation pit accident occurring at a station of metro Line 2 in Taiyuan as an example,the influence of the seepage and inrush of the foundation pit on the retaining structure and surrounding environm...Taking the deep foundation pit accident occurring at a station of metro Line 2 in Taiyuan as an example,the influence of the seepage and inrush of the foundation pit on the retaining structure and surrounding environment were studied under the geological conditions of the confined aquifer on the east coast of Fenhe River.The causes of deep foundation pit accident were also analyzed systematically based on the monitoring data,and various emergency measures were proposed to control the occurrence of secondary accident for deep foundation pit.The results showed that the occurrence of inrush for foundation pit was mainly caused by the insufficient dewatering.The development of the accident was effectively controlled by the adding of the dewatering wells,local grouting of retaining structure to stop seepage,surface grouting to reinforcement and uplift soil.The successful experience can provide some guidance to the construction of similar projects in the proposal.展开更多
By using numerical analysis methods to simulate the deep excavation,a lot of analyses are established on the basis of two-dimensional plane strain,ignoring the fact that foundation pit possesses three dimensions. For ...By using numerical analysis methods to simulate the deep excavation,a lot of analyses are established on the basis of two-dimensional plane strain,ignoring the fact that foundation pit possesses three dimensions. For soil constitutive relation,people always take linear and nonlinear model,without considering the plastic behavior of soil. Using plastic-elastic hardening model to simulate constitutive relation of soil characteristics,the authors carried out mechanical analysis for pit excavation and support. The results show that the analysis for the stress state of pile anchor system is an effective way which provides theoretical basis for calculation of soil displacement.展开更多
Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or t...Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or the surrounding existing infrastructure around it. This article overviews the risk control practice of foundation pit excavation projects in close proximity to <span style="font-family:Verdana;">existing</span><span style="font-family:Verdana;"> disconnected piled raft. More focus is given to geotechnical aspects. The review begins with achievements to ensure excavation performance </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and follows to discuss the complex </span><span style="font-family:Verdana;">soil structure</span><span style="font-family:Verdana;"> interaction involved among the fundamental components</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">: </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">the retaining wall, mat, piles, cushion, and the soil. After bringing consensus points to practicing engineers and </span><span style="font-family:Verdana;">decision makers</span><span style="font-family:Verdana;">, it then suggests possible future research directions.</span></span></span></span>展开更多
For deep foundation pit dewatering in the Yangtze River Delta, it is easy to make a dramatic decrease of the underground water level surrounding the dewatering area and cause land subsidence and geologic disasters. In...For deep foundation pit dewatering in the Yangtze River Delta, it is easy to make a dramatic decrease of the underground water level surrounding the dewatering area and cause land subsidence and geologic disasters. In this work, a three-dimensional finite element simulation method was applied in the forth subway of Dongjiadu tunnel repair foundation pit dewatering in Shanghai. In order to control the decrease of the underground water level around the foundation pit, the foundation pit dewatering method was used to design the optimization project of dewatering ,which was simulated under these conditions that the aquifers deposited layer by layer, the bottom of the aquifers went deep to 144.45 m, the retaining wall of foundation pit shield went deep to 65 m, the filters of the extraction wells were located between 44 m to 59 m, the water level in the deep foundation pit was decreased by 34 m, and the maximum decrease of water level outside the foundation pit was 3 m. It is shown that the optimization project and the practical case are consistent with each other. Accordingly, the three-dimensional finite element numerical simulation is the basic theory of optimization design of engineering structures of dewatering in deep foundation pit in such areas.展开更多
To predict the behavior of land subsidence due to groundwater withdrawal, a 3D numerical model is established. The model takes the confined aquifer and soft deposit of Ningbo into account. According to the pumping tes...To predict the behavior of land subsidence due to groundwater withdrawal, a 3D numerical model is established. The model takes the confined aquifer and soft deposit of Ningbo into account. According to the pumping test data, changing regulations of groundwater level, and land subsidence during dewatering are analyzed. Comparison between the calculated value and measured value shows that the 3D model simulates the measured value fairly well. The future behavior of land subsidence during dewatering period provides the scientific basis for the construction of deep foundation.展开更多
Based on random theory, fluid dynamics , porous media and soil mechanics, the porosity and random characteristic of the two-layer soft soil in Wuhan region were studied in this paper. The random seepage coefficient on...Based on random theory, fluid dynamics , porous media and soil mechanics, the porosity and random characteristic of the two-layer soft soil in Wuhan region were studied in this paper. The random seepage coefficient on the two-layer soft soil was analyzed, and the seepage model and its random distribution Junction mere given. The groundwater flow differential equations related to the two layer soft soil structure were also established. The evaluation procedure of effect boundary on the pumping water in deep foundation pit was put forward. Moreover , with an engineering example, the probability distribution on random boundary prediction for pumping water of foundation pit was computed.展开更多
The geological condition and the original structure feature and foundation design of Wuhan Tianheng building are described. The accident appearance of pile foundation in the construction execution of work is illustrat...The geological condition and the original structure feature and foundation design of Wuhan Tianheng building are described. The accident appearance of pile foundation in the construction execution of work is illustrated. The generating source of this pile foundation accident is analyzed in great details.展开更多
Many uncertain factors in the excavation process may lead to excessive lateral displacement or overlimited internal force of the piles,as well as inordinate settlement of soil surrounding the existing bridge foundatio...Many uncertain factors in the excavation process may lead to excessive lateral displacement or overlimited internal force of the piles,as well as inordinate settlement of soil surrounding the existing bridge foundation.Safety control is pivotal to ensuring the safety of adjacent structures.In this paper,an innovative method is proposed that combines an analytic hierarchy process(AHP)with a finite element method(FEM)to reveal the potential impact risk of uncertain factors on the surrounding environment.The AHP was adopted to determine key influencing factors based on the weight of each influencing factor.The FEM was used to quantify the impact of the key influencing factors on the surrounding environment.In terms of the AHP,the index system of uncertain factors was established based on an engineering investigation.A matrix comparing the lower index layer to the upper index layer,and the weight of each influencing factor,were calculated.It was found that the excavation depth and the distance between the foundation pit and the bridge foundation were fundamental factors.For the FEM,the FE baseline model was calibrated based on the case of no bridge surrounding the foundation pit.The consistency between the monitoring data and the numerical simulation data for a ground settlement was analyzed.FE simulations were then conducted to quantitatively analyze the degree of influence of the key influencing factors on the bridge foundation.Furthermore,the lateral displacement of the bridge pile foundation,the internal force of the piles,and the settlement of the soil surrounding the pile foundation were emphatically analyzed.The most hazardous construction condition was also determined.Finally,two safety control measures for increasing the numbers of support levels and the rooted depths of the enclosure structure were suggested.A novel method for combining AHP with FEM can be used to determine the key influencing aspects among many uncertain factors during a construction,which can provide some beneficial references for engineering design and construction.展开更多
A disconnectable coupling joint with double row wedges(DCJD)is a crucial component of the prestressed internal bracing in subway foundation pits.However,only a few studies have been conducted on the bearing capacity o...A disconnectable coupling joint with double row wedges(DCJD)is a crucial component of the prestressed internal bracing in subway foundation pits.However,only a few studies have been conducted on the bearing capacity of the joints;moreover,the yield load and compression stiffness of DCJDs are typically determined from experience.The aim of this study was to quantitatively determine the bearing capacity and propose accurate formulas for calculating the yield load and compression stiffness of DCJDs.Hence,a DCJD was selected from a foundation pit in Beijing,China,and loading experiments were conducted under axial force.Load–displacement and load–strain curves were obtained,and the failure modes of the joint were analyzed.The experimental results were verified through several finite element models.Subsequently,parametric analyses were performed to investigate the effects of the dimensions of the key position on the DCJD’s bearing capacities.Moreover,regression analysis was used to obtain the formulae for estimating the initial compression stiffness and yield load of the DCJD.Finally,the fitting formulae results were compared with the numerical and experimental results.The comparisons showed that the fitting formulae were highly accurate in estimating the bearing capacity of the DCJD.展开更多
Owner:Shanghai Tower Construction & Development Co.,Ltd.Contractor:Shanghai Construction Group Co.,Ltd.Architectural Designer:Gensler,USA Structural engineer:Thornton Tomasetti,USA Construction Drawing Designer:To...Owner:Shanghai Tower Construction & Development Co.,Ltd.Contractor:Shanghai Construction Group Co.,Ltd.Architectural Designer:Gensler,USA Structural engineer:Thornton Tomasetti,USA Construction Drawing Designer:Tongji Architectural Design(Group)Co.,Ltd.With a height of 632 m,the Shanghai Tower stands展开更多
文摘Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.
文摘Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.
基金This paper is supported by the Hubei Construct Science Foundation of China (G200013).
文摘Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of confined aquifer and dewatering duration. In order to reduce engineering cost and diminish detrimental effect on ambient surrounding, optimization design target function based on the control of confined water drawdown and four restriction requisitions based on the control of safe water level, resistance to throwing up from the bottom of foundation pit, avoiding excessively great subsidence and unequal surface subsidence are proposed. A deep well dewatering project in the deep foundation pit is optimally designed. The calculated results including confined water level drawdown and surface subsidence are in close agreement with the measured results, and the optimization design can effectively control both surface subsidence outside foundation pit and unequal subsidence as a result of dewatering.
基金the Educational Department of Liaoning Province Through Scientific Research Project(20060051)National Natural Science Foundation of China(50604009)Universities Excellent Talents Support Plan to Train Foundation of Liaoning(RC-04-13)
文摘In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.
基金financially supported by the doctoral fund of the Ministry of Education of Chinathe Nature Science Foundation of Jiangsu Province, China (Grant Nos. 20130091110020 and BE2015675)
文摘A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation(horizontal hydraulic conductivity K_H = 16 m/d and vertical hydraulic conductivity K_V = S m/d). The difference between K_H and K_V indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme,in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of-28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.
基金National Natural Science Foundation of China( 5 986 80 0 1)
文摘The thinking of co evolution is applied to the optimization of retaining and protecting structure for deep foundation excavation, and the system of optimization of anchored row piles for deep foundation pit has been already developed successfully. For the co evolution algorithm providing an evolutionary mechanism to simulate ever changing problem space, it is an optimization algorithm that has high performance, especially applying to the optimization of complicated system of retaining and protecting for deep foundation pit. It is shown by many engineering practices that the co evolution algorithm has obvious optimization effect, so it can be an important method of optimization of retaining and protecting for deep foundation pit. Here the authors discuss the co evolution model, object function, all kinds of constraint conditions and their disposal methods, and several key techniques of system realization.
基金supported by the National Natural Science Foundation of China(51774199).
文摘To investigate the effect of deep foundation pit excavation on the stability of retaining structure, a subway stationin the city of Jinan was selected as a project, and a FLAC3D-based three dimensional model was developed fornumerical simulation. The horizontal displacement of the retaining structure, the axial force of the support, andthe vertical displacement of the column were studied and compared to the collected data from the field. The findingsindicate that when the foundation pit is excavated, the maximum deformation of the retaining structure progressivelydecreases from the top, the distortion of the retaining structure gradually rises, and the final maximumdeformation is around 17 meters deep. In each layer of support, the largest axial force support is located in thefirst reinforced concrete support;the uplift of the pit bottom caused by soil unloading plays a primary role in thevertical displacement of the column, and the column exhibits an upward trend under all construction conditions.When compared to the measured data, the generated findings are comparable and the fluctuation trend is extremelyconsistent. The findings of this article may give technical direction for the development of subway stationswith a comparable engineering basis.
基金National Natural Science Foundation of China(No.51908516)Natural Science Foundation of Shanxi Province,China(No.201901D211207)。
文摘Taking the deep foundation pit accident occurring at a station of metro Line 2 in Taiyuan as an example,the influence of the seepage and inrush of the foundation pit on the retaining structure and surrounding environment were studied under the geological conditions of the confined aquifer on the east coast of Fenhe River.The causes of deep foundation pit accident were also analyzed systematically based on the monitoring data,and various emergency measures were proposed to control the occurrence of secondary accident for deep foundation pit.The results showed that the occurrence of inrush for foundation pit was mainly caused by the insufficient dewatering.The development of the accident was effectively controlled by the adding of the dewatering wells,local grouting of retaining structure to stop seepage,surface grouting to reinforcement and uplift soil.The successful experience can provide some guidance to the construction of similar projects in the proposal.
文摘By using numerical analysis methods to simulate the deep excavation,a lot of analyses are established on the basis of two-dimensional plane strain,ignoring the fact that foundation pit possesses three dimensions. For soil constitutive relation,people always take linear and nonlinear model,without considering the plastic behavior of soil. Using plastic-elastic hardening model to simulate constitutive relation of soil characteristics,the authors carried out mechanical analysis for pit excavation and support. The results show that the analysis for the stress state of pile anchor system is an effective way which provides theoretical basis for calculation of soil displacement.
文摘Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or the surrounding existing infrastructure around it. This article overviews the risk control practice of foundation pit excavation projects in close proximity to <span style="font-family:Verdana;">existing</span><span style="font-family:Verdana;"> disconnected piled raft. More focus is given to geotechnical aspects. The review begins with achievements to ensure excavation performance </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and follows to discuss the complex </span><span style="font-family:Verdana;">soil structure</span><span style="font-family:Verdana;"> interaction involved among the fundamental components</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">: </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">the retaining wall, mat, piles, cushion, and the soil. After bringing consensus points to practicing engineers and </span><span style="font-family:Verdana;">decision makers</span><span style="font-family:Verdana;">, it then suggests possible future research directions.</span></span></span></span>
基金the Major Scientific Research Project Foundation of Shanghai (Grant No. 04dz12003)
文摘For deep foundation pit dewatering in the Yangtze River Delta, it is easy to make a dramatic decrease of the underground water level surrounding the dewatering area and cause land subsidence and geologic disasters. In this work, a three-dimensional finite element simulation method was applied in the forth subway of Dongjiadu tunnel repair foundation pit dewatering in Shanghai. In order to control the decrease of the underground water level around the foundation pit, the foundation pit dewatering method was used to design the optimization project of dewatering ,which was simulated under these conditions that the aquifers deposited layer by layer, the bottom of the aquifers went deep to 144.45 m, the retaining wall of foundation pit shield went deep to 65 m, the filters of the extraction wells were located between 44 m to 59 m, the water level in the deep foundation pit was decreased by 34 m, and the maximum decrease of water level outside the foundation pit was 3 m. It is shown that the optimization project and the practical case are consistent with each other. Accordingly, the three-dimensional finite element numerical simulation is the basic theory of optimization design of engineering structures of dewatering in deep foundation pit in such areas.
文摘To predict the behavior of land subsidence due to groundwater withdrawal, a 3D numerical model is established. The model takes the confined aquifer and soft deposit of Ningbo into account. According to the pumping test data, changing regulations of groundwater level, and land subsidence during dewatering are analyzed. Comparison between the calculated value and measured value shows that the 3D model simulates the measured value fairly well. The future behavior of land subsidence during dewatering period provides the scientific basis for the construction of deep foundation.
基金Supported by Financial Aid Project for Key Teachers of U-niversities
文摘Based on random theory, fluid dynamics , porous media and soil mechanics, the porosity and random characteristic of the two-layer soft soil in Wuhan region were studied in this paper. The random seepage coefficient on the two-layer soft soil was analyzed, and the seepage model and its random distribution Junction mere given. The groundwater flow differential equations related to the two layer soft soil structure were also established. The evaluation procedure of effect boundary on the pumping water in deep foundation pit was put forward. Moreover , with an engineering example, the probability distribution on random boundary prediction for pumping water of foundation pit was computed.
文摘The geological condition and the original structure feature and foundation design of Wuhan Tianheng building are described. The accident appearance of pile foundation in the construction execution of work is illustrated. The generating source of this pile foundation accident is analyzed in great details.
基金The authors acknowledge the National Key Research and Development Program of China(No.2017YFC0805402)the Open Project of the State Key Laboratory of Disaster Reduction in Civil Engineering(No.SLDRCE17-01)+1 种基金the Incentive Fund for Overseas Visits of Doctoral Students of Tianjin University in 2019(070-0903077101)the China Scholarship Council(CSC,201906250153)for their financial support.
文摘Many uncertain factors in the excavation process may lead to excessive lateral displacement or overlimited internal force of the piles,as well as inordinate settlement of soil surrounding the existing bridge foundation.Safety control is pivotal to ensuring the safety of adjacent structures.In this paper,an innovative method is proposed that combines an analytic hierarchy process(AHP)with a finite element method(FEM)to reveal the potential impact risk of uncertain factors on the surrounding environment.The AHP was adopted to determine key influencing factors based on the weight of each influencing factor.The FEM was used to quantify the impact of the key influencing factors on the surrounding environment.In terms of the AHP,the index system of uncertain factors was established based on an engineering investigation.A matrix comparing the lower index layer to the upper index layer,and the weight of each influencing factor,were calculated.It was found that the excavation depth and the distance between the foundation pit and the bridge foundation were fundamental factors.For the FEM,the FE baseline model was calibrated based on the case of no bridge surrounding the foundation pit.The consistency between the monitoring data and the numerical simulation data for a ground settlement was analyzed.FE simulations were then conducted to quantitatively analyze the degree of influence of the key influencing factors on the bridge foundation.Furthermore,the lateral displacement of the bridge pile foundation,the internal force of the piles,and the settlement of the soil surrounding the pile foundation were emphatically analyzed.The most hazardous construction condition was also determined.Finally,two safety control measures for increasing the numbers of support levels and the rooted depths of the enclosure structure were suggested.A novel method for combining AHP with FEM can be used to determine the key influencing aspects among many uncertain factors during a construction,which can provide some beneficial references for engineering design and construction.
基金the financial support provided by Natural Science of China(Grant Nos.51978018,51978019,51538001,and 51738010).
文摘A disconnectable coupling joint with double row wedges(DCJD)is a crucial component of the prestressed internal bracing in subway foundation pits.However,only a few studies have been conducted on the bearing capacity of the joints;moreover,the yield load and compression stiffness of DCJDs are typically determined from experience.The aim of this study was to quantitatively determine the bearing capacity and propose accurate formulas for calculating the yield load and compression stiffness of DCJDs.Hence,a DCJD was selected from a foundation pit in Beijing,China,and loading experiments were conducted under axial force.Load–displacement and load–strain curves were obtained,and the failure modes of the joint were analyzed.The experimental results were verified through several finite element models.Subsequently,parametric analyses were performed to investigate the effects of the dimensions of the key position on the DCJD’s bearing capacities.Moreover,regression analysis was used to obtain the formulae for estimating the initial compression stiffness and yield load of the DCJD.Finally,the fitting formulae results were compared with the numerical and experimental results.The comparisons showed that the fitting formulae were highly accurate in estimating the bearing capacity of the DCJD.
文摘Owner:Shanghai Tower Construction & Development Co.,Ltd.Contractor:Shanghai Construction Group Co.,Ltd.Architectural Designer:Gensler,USA Structural engineer:Thornton Tomasetti,USA Construction Drawing Designer:Tongji Architectural Design(Group)Co.,Ltd.With a height of 632 m,the Shanghai Tower stands