期刊文献+
共找到6,225篇文章
< 1 2 250 >
每页显示 20 50 100
A Novel Deep Model with Meta-Learning for Rolling Bearing Few-Shot Fault Diagnosis
1
作者 Xiaoxia Liang Ming Zhang +3 位作者 Guojin Feng Yuchun Xu Dong Zhen Fengshou Gu 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期102-114,共13页
Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not ... Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not meet the requirement.This leads to the so-called few-shot learning(FSL)problem,which requires the model rapidly generalize to new tasks that containing only a few labeled samples.In this paper,we proposed a new deep model,called deep convolutional meta-learning networks,to address the low performance of generalization under limited data for bearing fault diagnosis.The essential of our approach is to learn a base model from the multiple learning tasks using a support dataset and finetune the learnt parameters using few-shot tasks before it can adapt to the new learning task based on limited training data.The proposed method was compared to several FSL methods,including methods with and without pre-training the embedding mapping,and methods with finetuning the classifier or the whole model by utilizing the few-shot data from the target domain.The comparisons are carried out on 1-shot and 10-shot tasks using the Case Western Reserve University bearing dataset and a cylindrical roller bearing dataset.The experimental result illustrates that our method has good performance on the bearing fault diagnosis across various few-shot conditions.In addition,we found that the pretraining process does not always improve the prediction accuracy. 展开更多
关键词 BEARING deep model fault diagnosis few-shot learning META-LEARNING
下载PDF
Advancing automated pupillometry:a practical deep learning model utilizing infrared pupil images
2
作者 Dai Guangzheng Yu Sile +2 位作者 Liu Ziming Yan Hairu He Xingru 《国际眼科杂志》 CAS 2024年第10期1522-1528,共7页
AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos... AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application. 展开更多
关键词 PUPIL infrared image algorithm deep learning model
下载PDF
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image
3
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 Fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
下载PDF
Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+Deep Learning Model
4
作者 Wanrun Li Wenhai Zhao +1 位作者 Tongtong Wang Yongfeng Du 《Structural Durability & Health Monitoring》 EI 2024年第5期553-575,共23页
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ... The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades. 展开更多
关键词 Structural health monitoring computer vision blade surface defects detection deeplabv3+ deep learning model
下载PDF
Mesh representation matters:investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models
5
作者 Robert KOSK Richard SOUTHERN +3 位作者 Lihua YOU Shaojun BIAN Willem KOKKE Greg MAGUIRE 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期383-395,共13页
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys... Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods. 展开更多
关键词 Shape modelling deep 3D morphable models Representation learning Feature engineering Perceptual metrics
下载PDF
Integrated Machine Learning and Deep Learning Models for Cardiovascular Disease Risk Prediction: A Comprehensive Comparative Study
6
作者 Shadman Mahmood Khan Pathan Sakan Binte Imran 《Journal of Intelligent Learning Systems and Applications》 2024年第1期12-22,共11页
Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of tra... Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health. 展开更多
关键词 Cardiovascular Disease Machine Learning deep Learning Predictive modeling Risk Assessment Comparative Analysis Gradient Boosting LSTM
下载PDF
基于Deep Forest算法的对虾急性肝胰腺坏死病(AHPND)预警数学模型构建
7
作者 王印庚 于永翔 +5 位作者 蔡欣欣 张正 王春元 廖梅杰 朱洪洋 李昊 《渔业科学进展》 CSCD 北大核心 2024年第3期171-181,共11页
为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据... 为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据标准化处理后分析病原、宿主与环境之间的相关性,对候选预警因子进行筛选,基于Python语言编程结合Deep Forest、Light GBM、XGBoost算法进行数据建模和预测性能评判,仿真环境为Python2.7,以预警因子指标作为输入样本(即警兆),以对虾是否发病指标作为输出结果(即警情),根据输入样本和输出结果各自建立输入数据矩阵和目标数据矩阵,利用原始数据矩阵对输入样本进行初始化,结合函数方程进行拟合,拟合的源代码能利用已知环境、病原及对虾免疫指标数据对目标警情进行预测。最终建立了基于Deep Forest算法的虾体(肝胰腺内)细菌总数、虾体弧菌(Vibrio)占比、水体细菌总数和盐度的4维向量预警预报模型,准确率达89.00%。本研究将人工智能算法应用到对虾AHPND发生的预测预报,相关研究结果为对虾AHPND疾病预警预报建立了预警数学模型,并为对虾健康养殖和疾病防控提供了技术支撑和有力保障。 展开更多
关键词 对虾 急性肝胰腺坏死病 预警数学模型 deep Forest算法 PYTHON语言
下载PDF
基于M-DeepLab网络的速度建模技术研究
8
作者 徐秀刚 张浩楠 +1 位作者 许文德 郭鹏 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期145-155,共11页
本文提出了一种适用于速度建模方法的M-DeepLab网络框架,该网络将地震炮集记录作为输入,网络主体使用轻量级MobileNet,以此提升网络训练速度;并在编码环节ASPP模块后添加了Attention模块,且在解码环节将不同网络深度的速度特征进行了融... 本文提出了一种适用于速度建模方法的M-DeepLab网络框架,该网络将地震炮集记录作为输入,网络主体使用轻量级MobileNet,以此提升网络训练速度;并在编码环节ASPP模块后添加了Attention模块,且在解码环节将不同网络深度的速度特征进行了融合,既获得了更多的速度特征,又保留了网络浅部的速度信息,防止出现网络退化和过拟合问题。模型测试证明,M-DeepLab网络能够实现智能、精确的速度建模,简单模型、复杂模型以及含有噪声数据复杂模型的智能速度建模,均取得了良好的效果。相较DeepLabV3+网络,本文方法对于速度模型界面处的预测,特别是速度突变区域的预测,具有更高的预测精度,从而验证了该方法精确性、高效性、实用性和抗噪性。 展开更多
关键词 深度学习 速度建模 M-deepLab网络 监督学习
下载PDF
Hemodynamic Analysis and Diagnosis Based on Multi-Deep Learning Models
9
作者 Xing Deng Feipeng Da Haijian Shao 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1369-1383,共15页
This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional te... This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques.The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells,namely,eosinophils,neutrophils,monocytes,and lymphocytes,known for their relationship with human body damage,inflammatory regions,and organ illnesses,in particular,and with the health of the immune system and other hazards,such as cardiovascular disease or infections,more in general.The results of the experiments show that the deep learning models can automatically extract features from the blood cell images and properly classify them with an accuracy of 98%,97%,and 89%,respectively,with regard to the training,verification,and testing of the corresponding datasets. 展开更多
关键词 Blood cell analysis deep learning models classification-detection
下载PDF
Automatic Image Annotation Using Adaptive Convolutional Deep Learning Model
10
作者 R.Jayaraj S.Lokesh 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期481-497,共17页
Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of ... Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled. 展开更多
关键词 deep learning model J-image segmentation honey badger algorithm convolutional neural network image annotation
下载PDF
基于改进DeepLabv3+模型的农村道路提取方法研究
11
作者 何士俊 肖提荣 夏既胜 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期486-495,共10页
从国产高分辨率影像中快速准确提取农村道路在信息管理、农村农业现代化等领域具有重要的价值,但由于背景噪音复杂、道路蜿蜒细长、易受阴影遮挡等,传统遥感解译方法提取农村道路信息效率低、精度不高.文章针对农村道路的特征,对DeepLab... 从国产高分辨率影像中快速准确提取农村道路在信息管理、农村农业现代化等领域具有重要的价值,但由于背景噪音复杂、道路蜿蜒细长、易受阴影遮挡等,传统遥感解译方法提取农村道路信息效率低、精度不高.文章针对农村道路的特征,对DeepLabv3+模型进行改进,设计了一种兼具效率和精度的高分辨率影像农村道路信息提取改进模型.首先,使用Mobilenetv2作为模型的主干,减少模型的参数;其次,在ASPP模块中串联CBAM,加强模型的特征感受能力;最后,添加Dice Loss函数改进损失函数,克服样本的不均衡.实验结果表明,细节的改进使得各项指标明显提升,效率和精度达到了最高;与经典模型相比,改进模型在MPA、MIoU上取得了更高的分数,虽然对深层特征的深度学习需要花费更多的时间,但改进模型在精度效率上均优于其他模型. 展开更多
关键词 农村道路 GF-2遥感影像 deepLabv3+模型 深度学习
下载PDF
Facial Image-Based Autism Detection:A Comparative Study of Deep Neural Network Classifiers
12
作者 Tayyaba Farhat Sheeraz Akram +3 位作者 Hatoon SAlSagri Zulfiqar Ali Awais Ahmad Arfan Jaffar 《Computers, Materials & Continua》 SCIE EI 2024年第1期105-126,共22页
Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula... Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis. 展开更多
关键词 AUTISM Autism Spectrum Disorder(ASD) disease segmentation features optimization deep learning models facial images classification
下载PDF
基于改进Deeplabv3+的电力线分割方法研究
13
作者 唐心亮 赵冰雪 +1 位作者 韩明 宿景芳 《国外电子测量技术》 2024年第3期43-49,共7页
针对已有的分割算法存在的复杂场景干扰大、分割不准确的问题,提出一种用于电力线分割任务的改进Deeplabv3+模型。将原始主干网络替换为轻量级Mobilenetv2网络,增加低水平特征,获得5路输入特征,充分提取特征信息;添加空洞空间金字塔池化... 针对已有的分割算法存在的复杂场景干扰大、分割不准确的问题,提出一种用于电力线分割任务的改进Deeplabv3+模型。将原始主干网络替换为轻量级Mobilenetv2网络,增加低水平特征,获得5路输入特征,充分提取特征信息;添加空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)的卷积分支数量,调整空洞率,提升图像的特征抓取能力,进一步在每个空洞卷积后加入1×1卷积操作,加快计算速度;提出一种基于坐标注意力机制的语义嵌入分支模块(coordinate attention semantic embedding branch,CASEB),融合第2、3路特征,增强目标特征的表示;引入卷积注意力机制模块(convolution block attention module,CBAM)抑制无用信息的传递,提高模型识别效率。实验结果表明,相对于原Deeplabv3+模型,改进模型在平均像素精度(mean pixel attention,MPA)和平均交并比(mean intersection over union,mIoU)上分别提升2.37%和3.42%,该方法可提供更加精确的电力线分割结果。 展开更多
关键词 电力线分割 深度学习 改进deeplabv3+模型 Mobilenetv2 注意力模块
下载PDF
Extensive identification of landslide boundaries using remote sensing images and deep learning method
14
作者 Chang-dong Li Peng-fei Feng +3 位作者 Xi-hui Jiang Shuang Zhang Jie Meng Bing-chen Li 《China Geology》 CAS CSCD 2024年第2期277-290,共14页
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu... The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains. 展开更多
关键词 GEOHAZARD Landslide boundary detection Remote sensing image deep learning model Steep slope Large annual rainfall Human settlements INFRASTRUCTURE Agricultural land Eastern Tibetan Plateau Geological hazards survey engineering
下载PDF
A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage
15
作者 Fubing Liao Xiangqian Feng +6 位作者 Ziqiu Li Danying Wang Chunmei Xu Guang Chu Hengyu Ma Qing Yao Song Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期711-723,共13页
Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth sta... Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.Therefore,we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage(EPIS),which combines a convolutional neural network(CNN)with an attention mechanism and a long short-term memory network(LSTM).The model was validated on a large set of sequential images collected by an unmanned aerial vehicle(UAV)from rice canopies at different growth stages during a two-year experiment.Compared with VGG16,AlexNet,GoogleNet,DenseNet,and inceptionV3,ResNet101 combined with LSTM obtained the highest average accuracy of 83.81%on the dataset of Huanghuazhan(HHZ,an indica cultivar).When tested on the datasets of HHZ and Xiushui 134(XS134,a japonica rice variety)in 2021,the ResNet101-LSTM model enhanced with the squeeze-and-excitation(SE)block achieved the highest accuracies of 85.38 and 88.38%,respectively.Through the cross-dataset method,the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%,respectively,showing a good generalization.Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS,which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage. 展开更多
关键词 dynamic model of deep learning UAV rice panicle initiation nutrient level diagnosis image classification
下载PDF
基于手势识别的DeepLabV3+算法研究
16
作者 王宇 潘景浩 +3 位作者 巫朝明 陈宗岩 王雅宁 谢跃 《现代信息科技》 2024年第18期39-42,47,共5页
文章为解决手势识别研究中欠缺考虑多时相、特征多样性的问题,提出了一种基于改进DeeplabV3+模型的手势识别提取方法。通过更改模型中ASPP模块结构,使用多个不同的空洞率以及图像金字塔池化等操作,增加CBAM注意力机制模块,提升模型的提... 文章为解决手势识别研究中欠缺考虑多时相、特征多样性的问题,提出了一种基于改进DeeplabV3+模型的手势识别提取方法。通过更改模型中ASPP模块结构,使用多个不同的空洞率以及图像金字塔池化等操作,增加CBAM注意力机制模块,提升模型的提取精度和效率。在公开Freihand数据集上进行验证,结果表明:改进后的DeeplabV3+模型训练速度提高了29.2%,识别精确度提升了0.04%,相似度提升了0.68%,召回率提高了0.36%。 展开更多
关键词 语义分割 手势识别 深度学习 deepLabV3+模型
下载PDF
基于自动生成样本的优化Deeplabv3+网络速度建模方法
17
作者 刘超 周怀来 +1 位作者 刘兴业 王元君 《石油物探》 CSCD 北大核心 2024年第5期953-967,共15页
建立精确的速度模型对地震成像和解释十分重要,深度学习方法为建立精确的速度模型提供了新的途径,然而,目前可用于速度建模网络训练的样本非常有限。为此,提出了一种利用随机曲线模拟地下速度模型,自动生成大量样本用于深度学习训练的... 建立精确的速度模型对地震成像和解释十分重要,深度学习方法为建立精确的速度模型提供了新的途径,然而,目前可用于速度建模网络训练的样本非常有限。为此,提出了一种利用随机曲线模拟地下速度模型,自动生成大量样本用于深度学习训练的方法。该方法通过生成一组随机数,插值形成随机序列,利用三角函数将随机序列生成随机曲线来模拟地下界面,生成层状速度模型,在此基础上,通过添加断裂、速度异常体和地层倾角来模拟更复杂的速度模型;在速度预测网络构建方面,选取Deeplabv3+网络作为速度预测网络。通过增加卷积层的方法,优化了Deeplabv3+网络上采样后直接输出导致边界模糊的问题。将上述方法应用于模型数据和实际数据,测试了该方法在含噪声、不同子波频率和部分数据缺失情况下的稳定性。结果表明,该方法能够有效地应对噪声、不同子波频率和部分数据缺失的影响,具有可靠的泛化性和鲁棒性。 展开更多
关键词 速度建模 随机曲线模拟 自动生成样本 深度学习 纵波速度
下载PDF
Vehicle Detection Based on Visual Saliency and Deep Sparse Convolution Hierarchical Model 被引量:4
18
作者 CAI Yingfeng WANG Hai +2 位作者 CHEN Xiaobo GAO Li CHEN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期765-772,共8页
Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high ... Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle. 展开更多
关键词 vehicle detection visual saliency deep model convolution neural network
下载PDF
Deep learning-based activity recognition and fine motor identification using 2D skeletons of cynomolgus monkeys 被引量:1
19
作者 Chuxi Li Zifan Xiao +11 位作者 Yerong Li Zhinan Chen Xun Ji Yiqun Liu Shufei Feng Zhen Zhang Kaiming Zhang Jianfeng Feng Trevor W.Robbins Shisheng Xiong Yongchang Chen Xiao Xiao 《Zoological Research》 SCIE CSCD 2023年第5期967-980,共14页
Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction.However,action recognition currently used in non-human primate(NHP)research ... Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction.However,action recognition currently used in non-human primate(NHP)research relies heavily on intense manual labor and lacks standardized assessment.In this work,we established two standard benchmark datasets of NHPs in the laboratory:Monkeyin Lab(Mi L),which includes 13 categories of actions and postures,and MiL2D,which includes sequences of two-dimensional(2D)skeleton features.Furthermore,based on recent methodological advances in deep learning and skeleton visualization,we introduced the Monkey Monitor Kit(Mon Kit)toolbox for automatic action recognition,posture estimation,and identification of fine motor activity in monkeys.Using the datasets and Mon Kit,we evaluated the daily behaviors of wild-type cynomolgus monkeys within their home cages and experimental environments and compared these observations with the behaviors exhibited by cynomolgus monkeys possessing mutations in the MECP2 gene as a disease model of Rett syndrome(RTT).Mon Kit was used to assess motor function,stereotyped behaviors,and depressive phenotypes,with the outcomes compared with human manual detection.Mon Kit established consistent criteria for identifying behavior in NHPs with high accuracy and efficiency,thus providing a novel and comprehensive tool for assessing phenotypic behavior in monkeys. 展开更多
关键词 Action recognition Fine motor identification Two-stream deep model 2D skeleton Non-human primates Rett syndrome
下载PDF
Deep model-based feature extraction for predicting protein subcellular localizations from bio-images
20
作者 Wei SHAO Yi DING +1 位作者 Hong-Bin SHEN Daoqiang ZHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第2期243-252,共10页
Protein subcellular localization prediction is im- portant for studying the function of proteins. Recently, as significant progress has been witnessed in the field of mi- croscopic imaging, automatically determining t... Protein subcellular localization prediction is im- portant for studying the function of proteins. Recently, as significant progress has been witnessed in the field of mi- croscopic imaging, automatically determining the subcellular localization of proteins from bio-images is becoming a new research hotspot. One of the central themes in this field is to determine what features are suitable for describing the pro- tein images. Existing feature extraction methods are usually hand-crafted designed, by which only one layer of features will be extracted, which may not be sufficient to represent the complex protein images. To this end, we propose a deep model based descriptor (DMD) to extract the high-level fea- tures from protein images. Specifically, in order to make the extracted features more generic, we firstly trained a convolu- tion neural network (i.e., AlexNe0 by using a natural image set with millions of labels, and then used the partial parame- ter transfer strategy to fine-tnne the parameters from natural images to protein images. After that, we applied the Lasso model to select the most distinguishing features from the last fully connected layer of the CNN (Convolution Neural Net- work), and used these selected features for final classifica- tions. Experimental results on a protein image dataset vali- date the efficacy of our method. 展开更多
关键词 partial parameter transfer subcellular location classification feature extraction deep model convolution neural network
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部