Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years.Constructing donor-acceptor(D-A)type molecules has been one of most commonly used s...Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years.Constructing donor-acceptor(D-A)type molecules has been one of most commonly used strategies to achieve deep-red emission,but it is always difficult to achieve high photoluminescence(PL)quantum yield(ηPL)due to forbidden charge-transfer state.Herein,we report a new D-A type molecule 4-(7-(4-(diphenylamino)phenyl)-9-oxo-9H-fluoren-2-yl)benzonitrile(TPAFOCN),deriving from donor-acceptor-donor(D-A-D)type 2,7-bis(4-(diphenylamino)phenyl)-9H-fluoren-9-one(DTPA-FO)with a fluorescence maximum of 627 nm in solids.This molecular design enables a transformation of acceptor from fluorenone(FO)itself to 4-(9-oxo-9H-fluoren-2-yl)benzonitrile(FOCN).Compared with DTPA-FO,the introduction of cyanophenyl not only shifts the emission of TPA-FOCN to deep red with a fluorescence maximum of 668 nm in solids,but also maintains the highηPL of 10%.Additionally,a solution-processed non-doped organic light-emitting diode(OLED)was fabricated with TPA-FOCN as emitter.TPA-FOCN device showed a maximum luminous efficiency of 0.13 cd/A and a maximum external quantum efficiency(EQE)of 0.22%with CIE coordinates of(0.64,0.35).This work provides a valuable strategy for the rational design of high-efficiency deep-red emission materials using cyanophenyl as an ancillary acceptor.展开更多
基金supported by the National Natural Science Foundation of China(Nos.91833304,51873077,51803071 and51673083)the National Basic Research Program of China(Nos.2015CB655003 and 2016YFB0401001)+2 种基金the Postdoctoral Innovation Talent Support Project(Nos.BX201700097 and BX20180121)the China Postdoctoral Science Foundation(Nos.2017M620108 and2018M641767)JLUSTIRT(No.2019TD-33)
文摘Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years.Constructing donor-acceptor(D-A)type molecules has been one of most commonly used strategies to achieve deep-red emission,but it is always difficult to achieve high photoluminescence(PL)quantum yield(ηPL)due to forbidden charge-transfer state.Herein,we report a new D-A type molecule 4-(7-(4-(diphenylamino)phenyl)-9-oxo-9H-fluoren-2-yl)benzonitrile(TPAFOCN),deriving from donor-acceptor-donor(D-A-D)type 2,7-bis(4-(diphenylamino)phenyl)-9H-fluoren-9-one(DTPA-FO)with a fluorescence maximum of 627 nm in solids.This molecular design enables a transformation of acceptor from fluorenone(FO)itself to 4-(9-oxo-9H-fluoren-2-yl)benzonitrile(FOCN).Compared with DTPA-FO,the introduction of cyanophenyl not only shifts the emission of TPA-FOCN to deep red with a fluorescence maximum of 668 nm in solids,but also maintains the highηPL of 10%.Additionally,a solution-processed non-doped organic light-emitting diode(OLED)was fabricated with TPA-FOCN as emitter.TPA-FOCN device showed a maximum luminous efficiency of 0.13 cd/A and a maximum external quantum efficiency(EQE)of 0.22%with CIE coordinates of(0.64,0.35).This work provides a valuable strategy for the rational design of high-efficiency deep-red emission materials using cyanophenyl as an ancillary acceptor.