期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Analysis on the deployment of mining research supported by the grant program of Deep Resources Exploration and Mining
1
作者 FAN Jun ZHANG Jialin +3 位作者 QIN Yuan WANG Hao GAO Yanan PEI Yongzhi 《煤田地质与勘探》 CAS CSCD 北大核心 2021年第3期1-7,共7页
The Deep Resources Exploration and Mining(DREAM)grant program,within the framework of The National Key Research and Development Program grants,is a pillar to implement China’s science and technology strategy in the a... The Deep Resources Exploration and Mining(DREAM)grant program,within the framework of The National Key Research and Development Program grants,is a pillar to implement China’s science and technology strategy in the area of deep resources exploitation.To tackle the insufficient of theories and technologies for the 1000-meter-deep mining,a section of mining,covering the research of basic theories,general technologies and application demonstration,was arranged in the layout of DREAM under the principle of"whole chain design,integrated implementation".In the aspect of basic research,DREAM mainly focused on the deep rock mechanics and mining theory,such as the in-situ mechanical behavior of deep rock,deep high stress induction and energy regulation theory.For the general and key technologies,DREAM supported the research on the mine construction and hoisting,excavation,rock breaking,mining methods and mining safety according to the characteristics of coal and metal mines.For the demonstration application,taking green,safe and efficient as the starting point,DREAM aimed at the green,safe and high efficiency mining,and the demonstration and leading role projects such as the low-waste and high-efficiency back fill mining.Since 2016,10 R&D projects have been funded,and 122 institutional participants with a total budget of RMB 235 million from the central government and RMB 480 million from enterprises as well as local governments have been involved.It is expected that the mining section of DREAM would contribute to establishing the theory and technology system in the area of deep mining and promoting the ability of deep resource exploitation in China. 展开更多
关键词 resource of deep earth MINING theory general technology application demonstration
下载PDF
Progress in research on the exploration and evaluation of deep geothermal resources in the Fujian-Guangdong-Hainan region,China
2
作者 Herong Zheng Jun Luo 《Energy Geoscience》 EI 2024年第2期1-13,共13页
Deep geothermal resources in the Fujian-Guangdong-Hainan region,China,offer significant potential for sustainable energy.The diverse igneous rock formations along the southeast coast present intricate geological chall... Deep geothermal resources in the Fujian-Guangdong-Hainan region,China,offer significant potential for sustainable energy.The diverse igneous rock formations along the southeast coast present intricate geological challenges that impede exploration and evaluation efforts.In this study,we address critical concerns related to the Fujian-Guangdong-Hainan region's deep geothermal resources,encompassing heat source composition,formation conditions,strategic favorable areas,and exploration directions.Our methods involve the analysis of regional geothermal reservoirs and cap rocks.Major findings include:the primary heat sources in the Fujian-Guangdong-Hainan region consist of the radioactive heat generation from granites in the crust,heat conduction in the mantle,and,in specific areas like Yangjiang and Shantou,melts within the middle and lower crust;the deep,high-temperature geothermal resources in the region predominantly reside in basins'depressed areas.These areas are characterized by the confluence of triple heat sources:heat from the Earth's crust,mantle,and other supplementary sources;our analysis led to the identification of three strategic areas favorable for deep geothermal resources in the Fujian-Guangdong-Hainan region.These are the Beibu Gulf Basin's continental area,the Yuezhong Depression,and the Fuzhou-Zhangzhou area. 展开更多
关键词 deep geothermal resources Geology of geothermal energy Strategic selection
下载PDF
Challenges and new insights for exploitation of deep underground metal mineral resources 被引量:21
3
作者 Peng LI Mei-feng CAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3478-3505,共28页
Long-term and continuous large-scale exploitation has increasingly exhausted shallow metal mineral resources,and deep mining has become inevitable.The current global status of deep mining of metal mineral resources wa... Long-term and continuous large-scale exploitation has increasingly exhausted shallow metal mineral resources,and deep mining has become inevitable.The current global status of deep mining of metal mineral resources was presented,a series of engineering challenges faced by deep mining were systematically analyzed,and some progress and future innovation focus in key engineering technologies,such as the prediction and prevention of rockburst,cooling techniques,rock support techniques,deep hoisting techniques,and several nontraditional deep mining techniques,were highlighted.Meanwhile,new insights into development strategies of deep mining technology were proposed.The integration of these forward-looking key innovative technologies will form the overall framework of an innovative technology system for the deep mining of metal minerals.This technology system will help to achieve safe,efficient,and green exploitation of deep underground metal mineral resources and ensure the sustainable development of the metal mining industry. 展开更多
关键词 deep metal mineral resources engineering challenges disaster control nontraditional mining technique sustainable development
下载PDF
Principles and technology for stepwise utilization of resources for mitigating deep mine heat hazards 被引量:17
4
作者 HE Manchao CAO Xiuling +4 位作者 XIE Qiao YANG Jiahua QI Ping YANG Qing CHEN Xueqian 《Mining Science and Technology》 EI CAS 2010年第1期20-27,共8页
As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep co... As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method. 展开更多
关键词 cooling system heat resources in deep mine heat hazard control mine water inrush stepwise utilization
下载PDF
Application of Transient Electromagnetic Method with Multi-Radiation Field Sources in Deep Edge Mineral Resources Exploration 被引量:2
5
作者 ZENG Youqiang ZENG Gaofu +3 位作者 HUANG Lishan LI Xiu GUO Jianlei WANG Jianchao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期99-101,共3页
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international... In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020). 展开更多
关键词 multiple radiation field sources exploration of deep mineral resources transient electromagnetic method
下载PDF
Deep geothermal resources in China:Potential,distribution,exploitation,and utilization 被引量:2
6
作者 Yongsheng Ma 《Energy Geoscience》 2023年第4期11-24,共14页
Deep geothermal resources mainly refer to the thermal energy stored in subsurface rocks and fluids therein at a depth of 3-10 km,which is a kind of renewable and sustainable clean energy unaffected by weather and seas... Deep geothermal resources mainly refer to the thermal energy stored in subsurface rocks and fluids therein at a depth of 3-10 km,which is a kind of renewable and sustainable clean energy unaffected by weather and seasonal changes.Large scale exploitation of the deep geothermal resources is of great significance to ensuring national energy security and achieving the“Carbon Peak and Carbon Neutrality”.Based on the latest terrestrial heat flow data,this paper estimated the potential of deep geothermal resources in the terrestrial areas of China,and the results show that the total amount of geothermal resources within 3e10 km under the Earth's surface in the terrestrial areas of China is 24.6×10^(15)GJ.In line with climate zones categorized,the geothermal resource proportion is 43.81%for severe cold regions,29.19%for cold regions,6.92%for mild regions,13.82%for hot summer and cold winter regions,and 6.26%for hot summer and warm winter regions.Statistics according to the burial depth range reveal that the resources within depth ranges of 3-5 km,5-7 km and 7-10 km under the Earth's surface are 4.3119×10^(15)GJ,6.37674×10^(15)GJ and 13.89594×10^(15)GJ respectively,showing an increasing trend of geothermal potential with increasing burial depth.The deep geothermal resources are mainly of medium-to-high temperature reserves,and the energy supply strategy can be optimized by combining the climate conditions and population distribution,as well as considering power generation.In regions of cold or severe cold climate,the geothermal resources may be applied to geothermal power generation and district heating in combination;in regions of hot summer and cold winter or mild climates,the resources can be used for geothermal power generation combined with cooling and heating;in regions of hot summer and warm winter climates,the resources may be applied to geothermal power generation combined with cooling and industrial and agricultural utilization.Exploitation of deep geothermal resources also can be combined with carbon dioxide sequestration,multi-mineral resources extraction and energy storage to realize comprehensive exploitation and utilization of various energy resources.It is suggested that theoretical technology research should be combined with pilot tests and field demonstrations,and large-scale economic exploitation of deep geothermal resources should be arranged in a coordinated manner,following the principles of overall planning and step-by-step implementation. 展开更多
关键词 China terrestrial area deep geothermal resource Resource potential Utilization strategy Deployment recommendation
下载PDF
Organization and Management of Deep Knowledge Resources for Product Innovation 被引量:1
7
作者 REN Gong-chang, LIU Yong-hong, ZHANG You-yun Institute of Lubrication Theory and Bearing, Xi′an Jiaotong University, Xi′an 710049, P.R.China 《International Journal of Plant Engineering and Management》 2003年第2期115-121,共7页
Product innovation, for a truly strong solution, needs deep knowledge. Based on this point, the authors draw a conclusion that patents are the main resource of deep technique knowledge. There are five levels of newly ... Product innovation, for a truly strong solution, needs deep knowledge. Based on this point, the authors draw a conclusion that patents are the main resource of deep technique knowledge. There are five levels of newly organized patents. The main results of the studies on patents are various technique effects. The database of effects is organized and managed according to the form of function-effect structure. 展开更多
关键词 deep knowledge resource PATENT EFFECTS MANAGEMENT
下载PDF
Carbon nanotube enhanced water-based drilling fluid for high temperature and high salinity deep resource development 被引量:5
8
作者 Jing-Ping Liu Xian-Fa Zhang +6 位作者 Wen-Chao Zhang Kai-He Lv Yin-Rui Bai Jin-Tang Wang Xian-Bin Huang Jia-Feng Jin Jin-Sheng Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第2期916-926,共11页
Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite i... Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%. 展开更多
关键词 High temperature Water-based drilling fluid High salinity Carbon nanotube deep resources
下载PDF
Deep original information preservation by applying in-situ film formation technology during coring 被引量:1
9
作者 Liang-Yu Zhu Tao Liu +7 位作者 Zhi-Yu Zhao Yi-Fan Wu Dong-Sheng Yang Xiang-Chao Shi Zhi-Qiang Liu Fei-Fei Lu Pei Qin Xiao-Liang Gao 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1322-1333,共12页
Accurately obtaining the original information of an in-situ rock via coring is a significant guiding step for exploring and developing deep oil and gas resources.It is difficult for traditional coring technology and e... Accurately obtaining the original information of an in-situ rock via coring is a significant guiding step for exploring and developing deep oil and gas resources.It is difficult for traditional coring technology and equipment to preserve the original information in deep rocks.This study develops a technology for insitu substance-preserved(ISP),moisture-preserved(IMP),and light-preserved(ILP)coring.This technology stores the original information in real time by forming a solid sealing film on the in-situ sample during coring.This study designed the ISP-IMP-ILP-Coring process and tool.In addition,an ISP-IMP-ILPCoring process simulation system was developed.The effects of temperature,pressure,and film thickness on the quality of the in-situ film were investigated by performing in-situ film-forming simulation experiments.A solid sealing film with a thickness of 2-3 mm can be formed;it completely covers the core sample and has uniform thickness.The film maintains good ISP-IMP-ILP properties and can protect the core sample in the in-situ environment steadily.This study verifies the feasibility of“film formation during coring”technology and provides strong support for the engineering application of ISP-IMP-ILPCoring technology. 展开更多
关键词 deep resource exploitation Original information ISP-IMP-ILP-Coring Solid sealing film In-situ film-forming Film formation during coring
下载PDF
Some Challenges of Deep Mining 被引量:19
10
作者 Charles Fairhurst 《Engineering》 SCIE EI 2017年第4期527-537,共11页
An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through su... An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania. 展开更多
关键词 deep mining Rock discontinuities Synthetic rock mass Mineral resources Rock mechanics
下载PDF
Mapping and resource evaluation of deep high-temperature geothermal resources in the Jiyang Depression,China
11
作者 Shaozheng Wang Yaoqi Zhou +5 位作者 Xin Zhang Yangzhou Wang Yonghong Yang Yuehan Shang Yang Chen Xiaoxin Shi 《Energy Geoscience》 EI 2024年第4期142-155,共14页
In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“d... In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“dual carbon”goals and the transition of energy structure.The Jiyang Depression in the Bohai Bay Basin has vast potential for deep,high-temperature geothermal resources.By analyzing data from 2187 wells with temperature logs and 270 locations for temperature measurement in deep strata,we mapped the geothermal field of shallow to medium-deep layers in the Jiyang Depression using ArcGIS and predicted the temperatures of deep layers with a burial depth of 4000 m.Through stochastic modeling and numerical simulation,a reservoir attribute parameter database for favorable deep,high-temperature geothermal areas was developed,systematically characterizing the spatial distribution of geothermal resources within a play fairway of 139.5 km2 and estimating the exploitable deep geothermal resource potential by using the heat storage method and Monte Carlo data analysis.The study reveals that the Fan 54 well block in the Boxing-Jijia region is of prime significance to develop deep,high-temperature geothermal resources in the Jiyang Depression.Strata from the Cenozoic to the Upper Paleozoic are identified as effective cap layers for these deep geothermal resources.The Lower Paleozoic capable of effectively storing thermal energy and possessing an exploitable resource volume up to 127 million tons of standard coal,is identified as a target system for the development of deep high-temperature geothermal resources,providing significant insights for the efficient development of geothermal resources in the Jiyang Depression. 展开更多
关键词 deep high-temperature geothermal resource Geological modeling Resource assessment Lower Paleozoic Jiyang Depression
下载PDF
3D Mineral Prospectivity Mapping Based on Deep Metallogenic Prediction Theory:A Case Study of the Lala Copper Mine,Sichuan,China 被引量:3
12
作者 Keyan Xiao Jie Xiang +1 位作者 Mingjing Fan Yang Xu 《Journal of Earth Science》 SCIE CAS CSCD 2021年第2期348-357,共10页
With the decrease in surface and shallow ore deposits,mineral exploration has focused on deeply buried ore bodies,and large-scale metallogenic prediction presents new opportunities and challenges.This paper adopts the... With the decrease in surface and shallow ore deposits,mineral exploration has focused on deeply buried ore bodies,and large-scale metallogenic prediction presents new opportunities and challenges.This paper adopts the predictive thinking method in this era of big data combined with specific research on the special exploration and exploitation of deep-earth resources.Four basic theoretical models of large-scale deep mineralization prediction and evaluation are explored:mineral prediction geological model theory,multidisciplinary information correlation theory,mineral regional trend analysis theory,and mineral prediction geological differentiation theory.The main workflow of large-scale deep resource prediction in the digital and information age is summarized,including construction of ore prospecting models of metallogenic systems,multiscale 3 D geological modeling,and 3 D quantitative prediction of deep resources.Taking the Lala copper mine in Sichuan Province as an example,this paper carries out deep 3 D quantitative prediction of mineral resources and makes a positive contribution to the future prediction and evaluation of mineral resources. 展开更多
关键词 deep mine resources prospectivity mapping 3D modeling quantitative evaluation Lala copper mine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部