The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and f...The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents.展开更多
In terrestrial ecosystems,deep soils(below 30 cm)are major organic carbon(C)pools.The labile carbon input could alter soil organic carbon(SOC)mineralization,resulting in priming effect(PE),which could be modified by n...In terrestrial ecosystems,deep soils(below 30 cm)are major organic carbon(C)pools.The labile carbon input could alter soil organic carbon(SOC)mineralization,resulting in priming effect(PE),which could be modified by nitrogen(N)availability,however,the underlying mechanism is unclear for deep soils,which complicates the prediction of deep soil C cycling in response to N deposition.A series of N applications with ^(13)C labeled glucose was set to investigate the effect of labile C and N on deep SOC mineralization.Microbial biomass,functional community,metabolic efficiency and enzyme activities were examined for their effects on SOC mineralization and PE.During incubation,glucose addition promoted SOC mineralization,resulting in positive PE.The magnitude of PE decreased significantly with increasing N.The N-regulated PE was not dependent on extracellular enzyme activities but was positively correlated with carbon use efficiency and negatively with metabolic quotient.Higher N levels resulted in higher microbial biomass and SOC-derived microbial biomass than lower N levels.These results suggest that the decline in the PE under high N availability was mainly controlled by higher microbial metabolic efficiency which allocated more C for growth.Structural equation modelling also revealed that microbial metabolic efficiency rather than enzyme activities was the main factor regulating the PE.The negative effect of additional N suggests that future N deposition could promote soil C sequestration.展开更多
Problematic soils usually cause considerable problems to engineering projects. As an example, soil structure collapse caused by moisture increment or rising underground water level results in huge settlements. This ty...Problematic soils usually cause considerable problems to engineering projects. As an example, soil structure collapse caused by moisture increment or rising underground water level results in huge settlements. This type of problematic soil, named collapsible soil, can cause dramatic problems and should be amended where exists. Today, the use of different techniques for soil reinforcement and soil improvement is widely used to treat soil properties. One of these methods is Deep Soil Mixing (DSM) method. This method becomes more important in the cases of studying and examining collapsible soils. In this research, the settlement of amended collapsible soils, applying deep soil mixing method, is examined. The experiments show that soil amendment using this method, well prevents the settlement of collapsible soils giving rise to bearing capacity.展开更多
To ascertain the effects of long-term conservation tillage and residue retention on soil organic carbon(SOC) content and aggregate distribution in a deep soil(>20-cm depth) in a dryland environment,this paper analy...To ascertain the effects of long-term conservation tillage and residue retention on soil organic carbon(SOC) content and aggregate distribution in a deep soil(>20-cm depth) in a dryland environment,this paper analyzed the SOC and aggregate distribution in soil, and the aggregate-associated organic carbon(OC) and SOC physical fractions. Conservation tillage(reduced tillage with residue incorporated(RT) and no-tillage with residue mulch(NT)) significantly increased SOC sequestration and soil aggregation in deep soil compared with conventional tillage with residue removal(CT). Compared with CT, RT significantly increased the proportion of small macroaggregates by 23%–81% in the 10–80 cm layer, and the OC content in small macroaggregates by 1%–58% in the 0–80 cm layer. RT significantly increased(by 24%–90%) the OC content in mineral-SOC within small macroaggregates in the 0–60 cm layer, while there was a 23%–80% increase in the 0–40 cm layer with NT. These results indicated that:(1) conservation tillage treatments are beneficial for soil aggregation and SOC sequestration in a deep soil in a dryland environment; and(2)the SOC in mineral-associated OC plays important roles in soil aggregation and SOC sequestration. In conclusion, RT with NT is recommended as an agricultural management tool in dryland soils because of its role in improving soil aggregation and SOC sequestration.展开更多
Soil moisture is the key resource constraint in arid ecosystems, and has been a focus of research on restoration. However, quantitative studies on the contribution of rainfall to deep soil rainfall infiltration are la...Soil moisture is the key resource constraint in arid ecosystems, and has been a focus of research on restoration. However, quantitative studies on the contribution of rainfall to deep soil rainfall infiltration are lacking. In this study, we used the YWB-01 Deep Soil Infiltration Water Recorder which had been invented by ourselves to measure the quantity of rain infiltration into deep soil, 150 cm below ground, in four locations in China: Mu Us Sandy Land and Ulan Buh, Tengger, and Badan Jilin deserts over a 2-year period. We found:(1) Deep soil rainfall infiltration decreased progressively from east to west and from semiarid to arid areas, with two locations completely lacking rainfall infiltration. Heavy rain was important to deep soil infiltration in shifting sandy land of arid and semiarid areas.(2) Seasonal variation of infiltration was correlated with rainfall, with a time lag that was less apparent in areas with more rainfall.(3) For single intense rainfall events, infiltration maximums occurred 40–55 h after the rainfall, during which the infiltration rates increased rapidly before reaching a peak, and then decreased slowly. Continuous infiltration could last about 150 h. Rainfall infiltration was determined by the combined action of intensity, quantity and duration. Rainfall with low intensity, long duration, and large quantity was most favorable for deep soil infiltration. Our results can be used in water resource assessments and protection during eco-restoration in the arid and semiarid areas in China.展开更多
The vertical distribution and exchange mechanisms of soil organic and inorganic carbon(SOC,SIC)play an important role in assessing carbon(C)cycling and budgets.However,the impact of land use through time for deep soil...The vertical distribution and exchange mechanisms of soil organic and inorganic carbon(SOC,SIC)play an important role in assessing carbon(C)cycling and budgets.However,the impact of land use through time for deep soil C(below 100 cm)is not well known.To investigate deep C storage under different land uses and evaluate how it changes with time,we collected soil samples to a depth of 500 cm in a soil profile in the Gutun watershed on the Chinese Loess Plateau(CLP);and determined SOC,SIC,and bulk density.The magnitude of SOC stocks in the 0-500 cm depth range fell into the following ranking:shrubland(17.2 kg m-2)>grassland(16.3 kg m-2)>forestland(15.2 kg m-2)>cropland(14.1 kg m 2)>gully land(6.4 kg m 2).The ranking for SIC stocks were:grassland(104.1 kg m^2)>forestland(96.2 kg m^2)>shrubland(90.6 kg m-2)>cropland(82.4 kg m 2)>gully land(50.3 kg m-2).Respective SOC and SIC stocks were at least 1.6-and 2.1-fold higher within the 100-500 cm depth range,as compared to the 0-100 cm depth range.Overall SOC and SIC stocks decreased significantly from the 5th to the 15th year of cultivation in croplands,and generally increased up to the 70th year.Both SOC and SIC stocks showed a turning point at 15 years cultivation,which should be considered when evaluating soil C sequestration.Estimates of C stocks greatly depends on soil sampling depth,and understanding the influences of land use and time will improve soil productivity and conservation in regions with deep soils.展开更多
Most of current studies of deep soil mixing (DSM) methods are focused on the soil strength improvement and soil treatment effectiveness. But the DSM installation leads to excess pore water pressure and soil disturbanc...Most of current studies of deep soil mixing (DSM) methods are focused on the soil strength improvement and soil treatment effectiveness. But the DSM installation leads to excess pore water pressure and soil disturbance, which will bring great harm to adjacent structures, such as shell tunnels and historic buildings. The procedure of excess pore water pressure buildup while large number DSM columns are installed is complicated. In order to find methods to predict and simulate the excess pore water pressure during DSM column installation, the complicated dissipation and buildup of excess pore water pressure through in-situ test are studied in this paper. In-situ test was conducted in soft clay near the Huangpu River in Shanghai. The pore water pressure was investigated by an automatic monitoring system. Test results indicate that the excess pore water pressure induced by one DSM column installation is composed of the compaction pressure and the reversing pressure. The empirical equations of excess pore water pressure dissipation and buildup were built by mathematical fitting methods. A compound method is proposed to simulate the excess pore water pressure due to DSM installation. Using this method to predict the excess pore water pressure in the situ test, results show a well agreement between the prediction and the measurements.展开更多
Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep ...Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.展开更多
To mitigate the impact of adjacent construction on existing shield tunnels,deep soil mixing(DSM)has been widely used to reinforce the soft soil ground around shield tunnels.However,the construction of DSM may cause th...To mitigate the impact of adjacent construction on existing shield tunnels,deep soil mixing(DSM)has been widely used to reinforce the soft soil ground around shield tunnels.However,the construction of DSM may cause the movement of existing shield tunnels under soft soil and sensitive ground conditions,and reasonable installation parameters will reduce the impact of DSM construction on the existing shield tunnels.Based on the field tests of DSM installation parameters and a program of field measurements of existing shield tunnels during the DSM construction in Suzhou,the reasonable installation parameters of DSM were selected,and the movement of soil behind the soil mixing walls(SMWs)during multirow DSM installation was investigated.The movement of the shield tunnels caused by DSM construction were discussed in detail.The field test results showed that the DSM columns installed at a higher speed and a lower water-cement ratio enlarged the movement of the surrounding soil.The DSM should be installed at a lower speed and a higher watercement ratio to reduce the movement of the shield tunnels.The field measurement results showed that the displacement of the tunnel lining was primarily caused by the construction of DSM zones beside the shield tunnels,which led to vertical compression and horizontal expansion of the tunnel lining.The construction of DSM immediately above the shield tunnels caused uplift to the tunnels.In addition,the deformed shapes of the two shield tunnels were asymmetric,and the displacement of the spring lining was larger than that of the crown.By taking the reasonable installation parameters of DSM and under the protection of the SMWs,the deformation of the shield tunnels caused by the construction of DSM was effectively controlled,and the maximum displacement was within the control value of the shield tunnels in this study.展开更多
Objective:To study the parasitic contamination of soil in selected areas of Sari,north of Iran.Methods:A cross-sectional study was conducted to identify all available parasites in surface and deep soil.In this study 5...Objective:To study the parasitic contamination of soil in selected areas of Sari,north of Iran.Methods:A cross-sectional study was conducted to identify all available parasites in surface and deep soil.In this study 580 soil samples(278 deep soil and 302 topsoil samples)from 21 different locations were collected from pathways,parks,greenhouses,estates around the city,cemetery,main squares,farmlands,fenced gardens and seashores.Depending on the soil type,two samples were prepared,from surface and deep soil at the depth of 3 to 5 cm.After performing various stages of preparation,including cleaning and washing,smoothing and flotation,parasitic elements were examined microscopically and quantitative parasite counting was done using a McMaster slide.Results:The results showed that the highest rate of parasitic contamination was related to nematodes larvae(26.11%).Other contaminants such as Entamoeba and Acanthamoeba cysts,vacuolization Blastocystis hominis form,oocyte containing sporocysts,Toxascaris eggs,nematoda larvae,Hymenolepis eggs,Ascaris eggs,Fasciola eggs,hookworm eggs,Toxocara eggs,insects'larvae and other ciliated and flagellated organisms were also observed.The results of this study showed that the highest contamination was found in public garden(25.80%)both in surface(29.30%)and in deep soil(21.12%),while the lowest level of contamination was observed in seashore surface soil(4.90%).Conclusions:The results showed that soil can provide a potential medium for the spread of soil transmitted parasitic diseases in the environment;therefore,preventive programs are needed.展开更多
Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher...Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher standards for defor- mation of the railways' frozen subgrade are required. Meanwhile, changes in subgrade soil temperatures are the main factors affecting the deformation of frozen subgrade. Therefore, this paper selected typical test subgrade sections of the Harbin-Qiqihar Line, a special line for passenger transport built in the deep seasonal frozen soil regions of China, to monitor field temperatures. Also, the temperature changing laws of railways' subgrade in this region was analyzed by using testing data, the aim of which is to provide a technical support for future design and construction of buildings and structures in a deep seasonal frozen soil region.展开更多
Based on analytical methods of strength studies for deep soils, direct shear tests were carried out to investigate the shear strength of deep reconstituted soils at different initial dry densities and amounts of water...Based on analytical methods of strength studies for deep soils, direct shear tests were carried out to investigate the shear strength of deep reconstituted soils at different initial dry densities and amounts of water.The results indicate that the shear strength of deep reconstituted soils for identical amounts of water below the plastic limit is enhanced with increasing dry density and but reduced sharply at the critical density, the point at which coarse particles break down.Moreover, the shear strength for identical dry density decreases with additional amounts of water and the rate of degradation is the greatest at the critical density.This is because the friction resistance between coarse particles reduces with increasing amounts of water higher than the plastic limit.In order to obtain reliable strength of deep reconstituted soils, suitable dry densities and amounts of water are necessary.展开更多
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio...In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.展开更多
Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fe...Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fertilizer. With prilled urea serving as N fertilizer, a two-year field experiment with two N rates (120 and 195 kg/hm2) and four basal N application treatments (B50, all fertilizer was broadcast with 50% as basal N;D50, D70 and D100 corresponded to 50%, 70% and 100% of N deeply placed as basal N, respectively) were conducted in direct-seeded rice in 2013 and 2014. Soil N distribution and plant N uptake were analyzed. The results showed that deep placement of basal N significantly increased total N concentrations in soil. Significantly greater soil N concentrations were observed in D100 compared with B50 at 0, 6 and 12 cm (lateral distance) from the fertilizer application point both at mid-tillering and heading stages. D100 presented the highest values of dry matter and N accumulation from seeding to mid-tillering stages, but it presented the lowest values from heading to maturity stages and the lowest grain yield for no sufficient N supply at the reproductive stage. The grain yield of D50 was the highest, however, no significant difference was observed in grain yield, N agronomic efficiency or N recovery efficiency between D70 and D50, or between D70 and B50, while D70 was more labor saving than D50 for only one topdressing was applied in D70 compared with twice in other treatments. The above results indicated that 70% of fertilizer-N deeply placed as a basal fertilizer and 30% of fertilizer-N topdressed as a panicle fertilizer constituted an ideal approach for direct-seeded rice. This recommendation was further verified through on-farm demonstration experiments in 2015, in which D70 produced in similar grain yields as B50 did.展开更多
Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has ...Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.展开更多
Thirty-nine deep subsurface soils(150—180 cm depth) near the outskirts of Beijing were investagated. The concentrations including n-alkanes from C_ 13 to C_ 36, pristane and phytane were in the range of 0.60 to 170...Thirty-nine deep subsurface soils(150—180 cm depth) near the outskirts of Beijing were investagated. The concentrations including n-alkanes from C_ 13 to C_ 36, pristane and phytane were in the range of 0.60 to 170.10 μg/g, with a median value of 4.26. Carbon preference index values for n-alkanes ranged from 1.08 to 2.98, with a median value of 1.48. The percentage contribution of “wax' n-alkanes was in the range of 6.03%—46.22%. A predominance of odd/even carbon n-alkanes and unresolved complex mixtures with different shapes and ranges were frequently observed. Factor analysis reduced the data set into three principal components and confirming contributions from low(19.58%), medium(20.49%) molecular weight species and long-chain n-alkanes(43.41%), respectively. Molecular biomarkers such as pristane, phytane, hopanes and steranes were detected. Based on the principal component analysis, the concentration profiles and molecular markers, it was found that the aliphatic hydrocarbons were from both biogenic and anthropogenic sources.展开更多
In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summ...In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.展开更多
基金Projects 50534040 supported by the National Natural Science Foundation of ChinaBK2007040 by the Natural Science Foundation of Jiangsu ProvinceCX08B_103Z by the Post Graduate Research Projects of Jiangsu Province
文摘The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents.
基金supported by the Natural Science Foundation of China(Grant numbers 31870465,31600377,31700462).
文摘In terrestrial ecosystems,deep soils(below 30 cm)are major organic carbon(C)pools.The labile carbon input could alter soil organic carbon(SOC)mineralization,resulting in priming effect(PE),which could be modified by nitrogen(N)availability,however,the underlying mechanism is unclear for deep soils,which complicates the prediction of deep soil C cycling in response to N deposition.A series of N applications with ^(13)C labeled glucose was set to investigate the effect of labile C and N on deep SOC mineralization.Microbial biomass,functional community,metabolic efficiency and enzyme activities were examined for their effects on SOC mineralization and PE.During incubation,glucose addition promoted SOC mineralization,resulting in positive PE.The magnitude of PE decreased significantly with increasing N.The N-regulated PE was not dependent on extracellular enzyme activities but was positively correlated with carbon use efficiency and negatively with metabolic quotient.Higher N levels resulted in higher microbial biomass and SOC-derived microbial biomass than lower N levels.These results suggest that the decline in the PE under high N availability was mainly controlled by higher microbial metabolic efficiency which allocated more C for growth.Structural equation modelling also revealed that microbial metabolic efficiency rather than enzyme activities was the main factor regulating the PE.The negative effect of additional N suggests that future N deposition could promote soil C sequestration.
文摘Problematic soils usually cause considerable problems to engineering projects. As an example, soil structure collapse caused by moisture increment or rising underground water level results in huge settlements. This type of problematic soil, named collapsible soil, can cause dramatic problems and should be amended where exists. Today, the use of different techniques for soil reinforcement and soil improvement is widely used to treat soil properties. One of these methods is Deep Soil Mixing (DSM) method. This method becomes more important in the cases of studying and examining collapsible soils. In this research, the settlement of amended collapsible soils, applying deep soil mixing method, is examined. The experiments show that soil amendment using this method, well prevents the settlement of collapsible soils giving rise to bearing capacity.
基金supported jointly by the National Key Research and Development Program of China (2018YFD0200408, 2016YFD0300804)the Science and Technology Project (2015BAD22B03)the Basic Scientific Research Business Expenses of the Chinese Academy of Agricultural Sciences (1610132018024)
文摘To ascertain the effects of long-term conservation tillage and residue retention on soil organic carbon(SOC) content and aggregate distribution in a deep soil(>20-cm depth) in a dryland environment,this paper analyzed the SOC and aggregate distribution in soil, and the aggregate-associated organic carbon(OC) and SOC physical fractions. Conservation tillage(reduced tillage with residue incorporated(RT) and no-tillage with residue mulch(NT)) significantly increased SOC sequestration and soil aggregation in deep soil compared with conventional tillage with residue removal(CT). Compared with CT, RT significantly increased the proportion of small macroaggregates by 23%–81% in the 10–80 cm layer, and the OC content in small macroaggregates by 1%–58% in the 0–80 cm layer. RT significantly increased(by 24%–90%) the OC content in mineral-SOC within small macroaggregates in the 0–60 cm layer, while there was a 23%–80% increase in the 0–40 cm layer with NT. These results indicated that:(1) conservation tillage treatments are beneficial for soil aggregation and SOC sequestration in a deep soil in a dryland environment; and(2)the SOC in mineral-associated OC plays important roles in soil aggregation and SOC sequestration. In conclusion, RT with NT is recommended as an agricultural management tool in dryland soils because of its role in improving soil aggregation and SOC sequestration.
基金supported by the National Basic Research Program of China (Grant No. 2013CB429901)the National Natural Science Foundation of China (Grant Nos. 31170667 and 40971283)
文摘Soil moisture is the key resource constraint in arid ecosystems, and has been a focus of research on restoration. However, quantitative studies on the contribution of rainfall to deep soil rainfall infiltration are lacking. In this study, we used the YWB-01 Deep Soil Infiltration Water Recorder which had been invented by ourselves to measure the quantity of rain infiltration into deep soil, 150 cm below ground, in four locations in China: Mu Us Sandy Land and Ulan Buh, Tengger, and Badan Jilin deserts over a 2-year period. We found:(1) Deep soil rainfall infiltration decreased progressively from east to west and from semiarid to arid areas, with two locations completely lacking rainfall infiltration. Heavy rain was important to deep soil infiltration in shifting sandy land of arid and semiarid areas.(2) Seasonal variation of infiltration was correlated with rainfall, with a time lag that was less apparent in areas with more rainfall.(3) For single intense rainfall events, infiltration maximums occurred 40–55 h after the rainfall, during which the infiltration rates increased rapidly before reaching a peak, and then decreased slowly. Continuous infiltration could last about 150 h. Rainfall infiltration was determined by the combined action of intensity, quantity and duration. Rainfall with low intensity, long duration, and large quantity was most favorable for deep soil infiltration. Our results can be used in water resource assessments and protection during eco-restoration in the arid and semiarid areas in China.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences,NO.XDB 40000000National Natural Science Foundation of China,No.41730108,No.41773141,No.41573136,No.41991252National Research Program for Key Issues in Air Pollution Control,No.DQGGO 105-02。
文摘The vertical distribution and exchange mechanisms of soil organic and inorganic carbon(SOC,SIC)play an important role in assessing carbon(C)cycling and budgets.However,the impact of land use through time for deep soil C(below 100 cm)is not well known.To investigate deep C storage under different land uses and evaluate how it changes with time,we collected soil samples to a depth of 500 cm in a soil profile in the Gutun watershed on the Chinese Loess Plateau(CLP);and determined SOC,SIC,and bulk density.The magnitude of SOC stocks in the 0-500 cm depth range fell into the following ranking:shrubland(17.2 kg m-2)>grassland(16.3 kg m-2)>forestland(15.2 kg m-2)>cropland(14.1 kg m 2)>gully land(6.4 kg m 2).The ranking for SIC stocks were:grassland(104.1 kg m^2)>forestland(96.2 kg m^2)>shrubland(90.6 kg m-2)>cropland(82.4 kg m 2)>gully land(50.3 kg m-2).Respective SOC and SIC stocks were at least 1.6-and 2.1-fold higher within the 100-500 cm depth range,as compared to the 0-100 cm depth range.Overall SOC and SIC stocks decreased significantly from the 5th to the 15th year of cultivation in croplands,and generally increased up to the 70th year.Both SOC and SIC stocks showed a turning point at 15 years cultivation,which should be considered when evaluating soil C sequestration.Estimates of C stocks greatly depends on soil sampling depth,and understanding the influences of land use and time will improve soil productivity and conservation in regions with deep soils.
基金the National Natural Science Foundation of China (No.41172251)
文摘Most of current studies of deep soil mixing (DSM) methods are focused on the soil strength improvement and soil treatment effectiveness. But the DSM installation leads to excess pore water pressure and soil disturbance, which will bring great harm to adjacent structures, such as shell tunnels and historic buildings. The procedure of excess pore water pressure buildup while large number DSM columns are installed is complicated. In order to find methods to predict and simulate the excess pore water pressure during DSM column installation, the complicated dissipation and buildup of excess pore water pressure through in-situ test are studied in this paper. In-situ test was conducted in soft clay near the Huangpu River in Shanghai. The pore water pressure was investigated by an automatic monitoring system. Test results indicate that the excess pore water pressure induced by one DSM column installation is composed of the compaction pressure and the reversing pressure. The empirical equations of excess pore water pressure dissipation and buildup were built by mathematical fitting methods. A compound method is proposed to simulate the excess pore water pressure due to DSM installation. Using this method to predict the excess pore water pressure in the situ test, results show a well agreement between the prediction and the measurements.
基金financially supported by the 13th Five-Year National Key Research and Development Project (No.2016YFC0501705) funded by the Ministry of Science and Technology (MOST),P.R.China。
文摘Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.
基金supported by National Natural Science Foundation of China(Grant Nos.51878157,41572273)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20181282)+1 种基金the China scholarship Council(CSC No.201806090208)the Suzhou Rail Transit Group co.,Ltd.
文摘To mitigate the impact of adjacent construction on existing shield tunnels,deep soil mixing(DSM)has been widely used to reinforce the soft soil ground around shield tunnels.However,the construction of DSM may cause the movement of existing shield tunnels under soft soil and sensitive ground conditions,and reasonable installation parameters will reduce the impact of DSM construction on the existing shield tunnels.Based on the field tests of DSM installation parameters and a program of field measurements of existing shield tunnels during the DSM construction in Suzhou,the reasonable installation parameters of DSM were selected,and the movement of soil behind the soil mixing walls(SMWs)during multirow DSM installation was investigated.The movement of the shield tunnels caused by DSM construction were discussed in detail.The field test results showed that the DSM columns installed at a higher speed and a lower water-cement ratio enlarged the movement of the surrounding soil.The DSM should be installed at a lower speed and a higher watercement ratio to reduce the movement of the shield tunnels.The field measurement results showed that the displacement of the tunnel lining was primarily caused by the construction of DSM zones beside the shield tunnels,which led to vertical compression and horizontal expansion of the tunnel lining.The construction of DSM immediately above the shield tunnels caused uplift to the tunnels.In addition,the deformed shapes of the two shield tunnels were asymmetric,and the displacement of the spring lining was larger than that of the crown.By taking the reasonable installation parameters of DSM and under the protection of the SMWs,the deformation of the shield tunnels caused by the construction of DSM was effectively controlled,and the maximum displacement was within the control value of the shield tunnels in this study.
基金Supported by Toxoplasmosis Research Center,Mazandaran University of Medical Sciences,Sari,Iran,(Grant No.101,2014).
文摘Objective:To study the parasitic contamination of soil in selected areas of Sari,north of Iran.Methods:A cross-sectional study was conducted to identify all available parasites in surface and deep soil.In this study 580 soil samples(278 deep soil and 302 topsoil samples)from 21 different locations were collected from pathways,parks,greenhouses,estates around the city,cemetery,main squares,farmlands,fenced gardens and seashores.Depending on the soil type,two samples were prepared,from surface and deep soil at the depth of 3 to 5 cm.After performing various stages of preparation,including cleaning and washing,smoothing and flotation,parasitic elements were examined microscopically and quantitative parasite counting was done using a McMaster slide.Results:The results showed that the highest rate of parasitic contamination was related to nematodes larvae(26.11%).Other contaminants such as Entamoeba and Acanthamoeba cysts,vacuolization Blastocystis hominis form,oocyte containing sporocysts,Toxascaris eggs,nematoda larvae,Hymenolepis eggs,Ascaris eggs,Fasciola eggs,hookworm eggs,Toxocara eggs,insects'larvae and other ciliated and flagellated organisms were also observed.The results of this study showed that the highest contamination was found in public garden(25.80%)both in surface(29.30%)and in deep soil(21.12%),while the lowest level of contamination was observed in seashore surface soil(4.90%).Conclusions:The results showed that soil can provide a potential medium for the spread of soil transmitted parasitic diseases in the environment;therefore,preventive programs are needed.
基金supported by the scientific research test of China Railway Corporation(Z2013-038)the National Natural Science Foundation of China(Nos.51208320 and 51178281)the Key Subject of China Railway Corporation(Nos.2014G003-F and 2014G005)
文摘Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher standards for defor- mation of the railways' frozen subgrade are required. Meanwhile, changes in subgrade soil temperatures are the main factors affecting the deformation of frozen subgrade. Therefore, this paper selected typical test subgrade sections of the Harbin-Qiqihar Line, a special line for passenger transport built in the deep seasonal frozen soil regions of China, to monitor field temperatures. Also, the temperature changing laws of railways' subgrade in this region was analyzed by using testing data, the aim of which is to provide a technical support for future design and construction of buildings and structures in a deep seasonal frozen soil region.
基金Projects 50534040 supported by the National Natural Science Foundation of China2006BAB16B01 by the Ministry of Science and Technology of ChinaCX08B_103Z by the Post Graduate Research Projects of Jiangsu Province
文摘Based on analytical methods of strength studies for deep soils, direct shear tests were carried out to investigate the shear strength of deep reconstituted soils at different initial dry densities and amounts of water.The results indicate that the shear strength of deep reconstituted soils for identical amounts of water below the plastic limit is enhanced with increasing dry density and but reduced sharply at the critical density, the point at which coarse particles break down.Moreover, the shear strength for identical dry density decreases with additional amounts of water and the rate of degradation is the greatest at the critical density.This is because the friction resistance between coarse particles reduces with increasing amounts of water higher than the plastic limit.In order to obtain reliable strength of deep reconstituted soils, suitable dry densities and amounts of water are necessary.
基金the Educational Department of Liaoning Province Through Scientific Research Project(20060051)National Natural Science Foundation of China(50604009)Universities Excellent Talents Support Plan to Train Foundation of Liaoning(RC-04-13)
文摘In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFD0300108)the National Natural Science Foundation of China(Grant Nos.31671630 and 31371581)the National Rice Industry Technology System(CARS-01-04A)in China
文摘Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fertilizer. With prilled urea serving as N fertilizer, a two-year field experiment with two N rates (120 and 195 kg/hm2) and four basal N application treatments (B50, all fertilizer was broadcast with 50% as basal N;D50, D70 and D100 corresponded to 50%, 70% and 100% of N deeply placed as basal N, respectively) were conducted in direct-seeded rice in 2013 and 2014. Soil N distribution and plant N uptake were analyzed. The results showed that deep placement of basal N significantly increased total N concentrations in soil. Significantly greater soil N concentrations were observed in D100 compared with B50 at 0, 6 and 12 cm (lateral distance) from the fertilizer application point both at mid-tillering and heading stages. D100 presented the highest values of dry matter and N accumulation from seeding to mid-tillering stages, but it presented the lowest values from heading to maturity stages and the lowest grain yield for no sufficient N supply at the reproductive stage. The grain yield of D50 was the highest, however, no significant difference was observed in grain yield, N agronomic efficiency or N recovery efficiency between D70 and D50, or between D70 and B50, while D70 was more labor saving than D50 for only one topdressing was applied in D70 compared with twice in other treatments. The above results indicated that 70% of fertilizer-N deeply placed as a basal fertilizer and 30% of fertilizer-N topdressed as a panicle fertilizer constituted an ideal approach for direct-seeded rice. This recommendation was further verified through on-farm demonstration experiments in 2015, in which D70 produced in similar grain yields as B50 did.
基金financially supported by the National Natural Science Foundation of China (41371053, 31270501)the National Science and Technology Planning Project (2011BAC07B02)+1 种基金the Strategic Forerunner Project of Science and Technology, Chineses Academy of Sciences (XDA05050201-04-01)the Special Scientific Research Fund (201109025-2)
文摘Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.
基金The National Basic Research Program(973) of China(No. G1999045707)
文摘Thirty-nine deep subsurface soils(150—180 cm depth) near the outskirts of Beijing were investagated. The concentrations including n-alkanes from C_ 13 to C_ 36, pristane and phytane were in the range of 0.60 to 170.10 μg/g, with a median value of 4.26. Carbon preference index values for n-alkanes ranged from 1.08 to 2.98, with a median value of 1.48. The percentage contribution of “wax' n-alkanes was in the range of 6.03%—46.22%. A predominance of odd/even carbon n-alkanes and unresolved complex mixtures with different shapes and ranges were frequently observed. Factor analysis reduced the data set into three principal components and confirming contributions from low(19.58%), medium(20.49%) molecular weight species and long-chain n-alkanes(43.41%), respectively. Molecular biomarkers such as pristane, phytane, hopanes and steranes were detected. Based on the principal component analysis, the concentration profiles and molecular markers, it was found that the aliphatic hydrocarbons were from both biogenic and anthropogenic sources.
基金funded by the China Postdoctoral Science Foundation(No. 2014M551909)the Jiangsu Geology & Mineral Exploration Bureau’s Science Foundation(No.2013-KY-13)
文摘In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.